Advertisement

From Varenna (1970) to Como (1995): Kurt Binder’s long walk in the land of criticality

  • Michel MareschalEmail author
Article
  • 28 Downloads

Abstract

This paper aims at contributing to the history of early computational statistical mechanics. The topic concerns the physics near a critical point and how long it took for Monte Carlo (MC) simulations to be seriously considered by the community as a valid and important tool to analyze critical phenomena. We will focus on one of the leading scientific figures behind this effort: Kurt Binder, whose scientific achievements were acknowledged by the award of the Boltzmann medal in 2007. Kurt Binder, who is now 75, has retired, some years ago, from a Professorship at the University of Mainz.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alder, B.J. and T.E. Wainwright. 1957. Phase Transition for a Hard Sphere System. J. Chem. Phys. 27:1208–1209. ADSCrossRefGoogle Scholar
  2. 2.
    Alder, B.J. and T.E. Wainwright. 1958, Molecular Dynamics by Electronic Computers, in International Symposium on the Statistical Mechanical Theory of Transport Processes, Brussels, 1956, edited by I. Prigogine (Interscience, New York), pp. 97–131. Google Scholar
  3. 3.
    Baumgärtner, A. and K. Binder. 1979. Dynamics of the Helix-Coil Transition in Biopolymers. J. Chem. Phys. 70:429–437. ADSCrossRefGoogle Scholar
  4. 4.
    Bernard, E.P. and W. Krauth. 2011. Two-steps melting in two dimensions: First-order Liquid-Hexatic Transition. Phys. Rev. Lett. 107:155704. ADSCrossRefGoogle Scholar
  5. 5.
    Binder, K. and H. Rauch. 1967a. Berechnung der Richtungsverteilung von Neutronen hinter einem gekrümmten totalreflektierenden Kollimatorschlitz? ATKE 12:145–158. Google Scholar
  6. 6.
    Binder, K. and H. Rauch. 1967b. Berechnung der spektralen Verteilung von Neutronen hinter einem gekrümmten totalreflektierenden Kollimatorschlitz? ATKE 12:337–342. Google Scholar
  7. 7.
    Binder, K. and H. Rauch. 1968. Calculation of spin-correlation functions in a ferro-magnet with a Monte Carlo method. Phys. Lett. A 27:247–248. ADSCrossRefGoogle Scholar
  8. 8.
    Binder, K. and H. Rauch, H. 1969. Numerische Berechnung von Spin-Korrelationsfunktionen und Magnetisierungskurven von Ferromagnetika. Z. Phys. 219:201–215. ADSCrossRefGoogle Scholar
  9. 9.
    Binder, K. 1972a. Statistical Mechanics of Finite Three-dimensional Ising Models. Physica 62:508–526. ADSCrossRefGoogle Scholar
  10. 10.
    Binder, K. and D. Stauffer. 1972b. Monte Carlo Study of the Surface Area of Liquid Droplets. J. Stat. Phys. 6:49–59. ADSCrossRefGoogle Scholar
  11. 11.
    Binder, K. and P.C. Hohenberg. 1972c. Phase Transitions and Static Spin Correlation Functions in Ising Models with Free Surfaces. Phys. Rev. B 6:3461–3487. ADSCrossRefGoogle Scholar
  12. 12.
    Binder, K. 1973. Time-Dependent Ginzburg-Landau Theory of Non-equilibrium Relaxation. Phys. Rev. B 8:3423–3438. ADSCrossRefGoogle Scholar
  13. 13.
    Binder, K. 1974. Monte Carlo Computer Experiments on Critical Phenomena and Metastable States. Adv. Phys. 23:917–939. ADSCrossRefGoogle Scholar
  14. 14.
    Binder, K. and K. Schröder. 1976. Phase Transitions of a Nearest-Neighbor Ising “Spin Glass”. Phys. Rev. B 14:2142–2152. ADSCrossRefGoogle Scholar
  15. 15.
    Binder, K. 1981. Finite Size analysis of Ising model Block Distribution Functions. Zeit. Phys. B: Condens. Matter 43:119–140. ADSCrossRefGoogle Scholar
  16. 16.
    Binder, K. and A.P. Young. 1986. Spin Glasses: Experimental Facts, Theoretical Concepts and Open Questions. Rev. Mod. Phys. 58:810–976. ADSCrossRefGoogle Scholar
  17. 17.
    Binder, K. and G. Ciccotti. 1996. Monte Carlo and Molecular Dynamics of Condensed Matter Systems. Societa Italiana di Fisica, Bologna. ISBN 88-7794-078-6. Google Scholar
  18. 18.
    Callen, H.B. and T.A. Welton. 1951. Irreversibility and Generalized Noise. Phys. Rev. 83:34–40. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Cardy, J.L. 1988. Finite-size Scaling, in Current Physics, Sources and Comments, edited by H. Rubinstein, North-Holland, Amsterdam, Vol. 2. Google Scholar
  20. 20.
    Chandler, D. 1987. Introduction to Modern Statistical Mechanics, Oxford University Press, New York. Google Scholar
  21. 21.
    Das S.K., M.E. Fisher, J.V. Sengers, J. Horbach and K. Binder. 2008. Critical Dynamics in a Binary Fluid: Simulations and Finite-Size Scaling. Phys. Rev. Lett. 97:025702. ADSCrossRefGoogle Scholar
  22. 22.
    Domb, C. 1996. The Critical Point: A Historical Introduction to the Modern Theory of Critical Phenomena. Taylor and Francis, Bristol. Google Scholar
  23. 23.
    Dünweg, B. 1996. Simulation of Phase Transitions: Critical Phenomena, in [Binder 1996]. Google Scholar
  24. 24.
    Erhman, J.P., L.D. Fosdick and D.C. Handscomb. 1960. Computation of the Order Parameter in an Ising Lattice by the Monte Carlo Method. J. Math. Phys. 1:547–558. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ferrenberg, A.M., J. Xu and D.P. Landau. 2018. Pushing the Limits of Monte Carlo Simulations for the Three-dimensional Ising Model. Phys. Rev. E 97:043301. ADSCrossRefGoogle Scholar
  26. 26.
    Fisher, M.E. 1967. The theory of Equilibrium Critical Phenomena. Rep. Prog. Phys. 30:615. ADSCrossRefGoogle Scholar
  27. 27.
    Fisher, M.E. 1971. Lecture notes in the proceedings of the Varenna summer school [Green 1971]. Google Scholar
  28. 28.
    Fisher, M.E. and M.N. Barber. 1972. Scaling Theory for Finite-Size Effects in the Critical Region. Phys. Rev. Lett. 28:1516–1519. ADSCrossRefGoogle Scholar
  29. 29.
    Fisher, M.E. 1983. Scaling, Universality and Renormalization Group Theory. In Critical Phenomena, Lecture Notes in Physics, edited by F.W.J. Hahne, Springer (Berlin), Vol. 186, pp. 1–139. ADSCrossRefGoogle Scholar
  30. 30.
    Friedberg, R. and J.E. Cameron. 1970. Test of the Monte Carlo Method: Fast Simulation of a Small Ising Lattice. J. Chem. Phys. 52:6049–6058. ADSCrossRefGoogle Scholar
  31. 31.
    Green, M.S. 1951. Brownian Motion in a Gas of Non-interacting Particles. J. Chem. Phys. 19:1036–1046. ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Green, M.S. 1971. Proceedings of the International School of Physics “Enrico Fermi” on Critical Phenomena. Course No 51, edited by M.S. Green, Academic Press, New York. Google Scholar
  33. 33.
    Heller, P. 1967. Experimental Investigations of Critical Phenomena. Rep. Prog. Phys. 30:731. ADSCrossRefGoogle Scholar
  34. 34.
    Kadanoff, L.P. et al. 1967. Static Phenomena near Critical Points: Theory and Experiments. Rev. Mod. Phys. 39:395–431. ADSCrossRefGoogle Scholar
  35. 35.
    Kadanoff, L.P. 1986. On two levels. Phys. Today 39:7–8. Google Scholar
  36. 36.
    Kaganov, M.I. and A.N. Omel’yanchuk. 1971. Zh. Eksp. i. Teor. Fiz 61:1691; see also M.I. Kaganov and A.N. Omel’yanchuk, Sov. Phys. JETP 34:895 (1972). Google Scholar
  37. 37.
    Kremer, K., A. Baumgärtner and K. Binder. 1981. Monte Carlo Renormalization of Hard Sphere Polymer Chains in Two to Five Dimensions. Z. Phys. B 40:331–341. ADSCrossRefGoogle Scholar
  38. 38.
    Kubo, R. 1957. Statistical Mechanical Theory of Irreversible Processes (I). J. Phys. Soc. Jpn. 12:570–586. ADSCrossRefGoogle Scholar
  39. 39.
    Landau, D.P. 1976. Finite-size Behavior of the Ising Square Lattice. Phys. Rev. B 13:2997–3011. ADSCrossRefGoogle Scholar
  40. 40.
    Landau, D.P. and K. Binder. 2005. Monte Carlo Simulations in Statistical Physics, Cambridge University Press, Cambridge, second edition. Google Scholar
  41. 41.
    Levesque, D. and J.-P. Hansen. 2018. The origin of computational Statistical Mechanics in France. Eur. Phys. J. H 44:37–46. CrossRefGoogle Scholar
  42. 42.
    Mareschal, M. 2018. Early Years of Computational Statistical Mechanics. Eur. Phys. J. H 43:293–302. CrossRefGoogle Scholar
  43. 43.
    Mareschal, M. and B.L. Holian. 1992. Molecular Simulations of Complex Hydrodynamic Phenomena, Plenum Press, New York. Google Scholar
  44. 44.
    Mauro, F., G. Ciccotti and K. Binder (Editors). 2006. Computer Simulations in Condensed Matter: From Materials to Chemical Biology, vols. 1 and 2. Lect. Notes Phys. 703, Springer, Berlin, Heidelberg. Google Scholar
  45. 45.
    Metropolis, N. and S. Ulam. 1949, The Monte Carlo Method. J. Am. Stat. Assoc. 44:335–341. CrossRefzbMATHGoogle Scholar
  46. 46.
    Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller. 1953. Equations of State Calculations by Fast Computing Machines. J. Chem. Phys. 21:1087–1092. ADSCrossRefGoogle Scholar
  47. 47.
    Müller-Krumbhaar, H. and K. Binder. 1973. Dynamic Properties of the Monte Carlo Method in Statistical Mechanics. J. Stat. Phys. 8:1–24. ADSCrossRefGoogle Scholar
  48. 48.
    Nightingale, M.P. 1976. Scaling Theory and Finite Systems. Physica 83A:561–572. Google Scholar
  49. 49.
    Niss, M. 2005. History of the Lenz-Ising Model 1920-1950: From ferromagnetic to cooperative phenomena. Arch. Hist. Exact Sci. (2005) 59:267–318. MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Niss, M. 2009. History of the Lenz-Ising Model 1950-1965: from irrelevance to relevance. Arch. Hist. Exact Sci. 63:243–287. MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Niss, M. 2011. History of the Lenz-Ising Model 1965–1971: the role of a simple model in understanding critical phenomena. Arch. Hist. Exact Sci. 65:625–658. MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Onsager, L. 1944. Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition. Phys. Rev. 65:117–149. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Orkoulas, G., A.Z. Panagiotopoulos and M.E. Fisher. 2000. Criticality and crossover in accessible regimes. Phys. Rev. E 61:5930–5939. ADSCrossRefGoogle Scholar
  54. 54.
    Plischke M. and B. Bergersen. 2006. Equilibrium Statistical Mechanics, 3rd edn, World Scientific, Singapore. Google Scholar
  55. 55.
    Rahman, A. 1964. Correlations in the Motion of Atoms in Liquid Argon. Phys. Rev. A 136:405–411. ADSCrossRefGoogle Scholar
  56. 56.
    Rosenbluth, M.N. and A.W. Rosenbluth. 1954. Monte Carlo Calculation of the Average Extension of Molecular Chains. J. Chem. Phys. 23:356–359. ADSCrossRefGoogle Scholar
  57. 57.
    Stanley, H.E. 1971. Introduction to Phase Transitions and Critical Phenomena. Clarendon Press, Oxford. Google Scholar
  58. 58.
    Stoll, E., K. Binder and T. Schneider. 1972. Evidence for Fisher’s Droplet Model in Simulated Two-Dimensional Cluster Distributions. Phys. Rev. B 6:2777–2780. ADSCrossRefGoogle Scholar
  59. 59.
    Swendsen, R.H. and J.-S. Wang. 1987. Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58:86–88. ADSCrossRefGoogle Scholar
  60. 60.
    Torrie, G.M. and J.P. Valleau. 1977. Non-physical Sampling Distributions in Monte Carlo Free-energy Estimation: Umbrella Sampling. J. Comput. Phys. 23:187–199. ADSCrossRefGoogle Scholar
  61. 61.
    Van Hove, L. 1954. Time-dependent Correlations between Spins and Neutron Scattering in Ferromagnetic Crystals. Phys. Rev. 95:1374–1384. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Verlet, L. 1967. Computer Experiments on Classical Fluids. (I). Phys. Rev. 159:98–103. ADSCrossRefGoogle Scholar
  63. 63.
    Widom, B. 1975. Critical Phenomena, in Fundamental Problems in Statistical Mechanics III, E.G.D. Cohen Editor, North-. Google Scholar
  64. 64.
    Wilson, K.G. 1971a. Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture. Phys. Rev. B 4:3174–3184. ADSCrossRefzbMATHGoogle Scholar
  65. 65.
    Wilson, K.G. 1971b. Renormalization Group and Critical Phenomena. II. Phase-Space Cell Analysis of Critical Behavior. Phys. Rev. B 4:3184–3205. ADSCrossRefzbMATHGoogle Scholar
  66. 66.
    Wood, W.W. and J.D. Jacobson. 1957. Preliminary Results from the Recalculation of the Equation of State of Hard Spheres. J. Chem. Phys. 27:1207–1208. ADSCrossRefGoogle Scholar
  67. 67.
    Xu, J., S.-H. Tsai, D.P. Landau and K. Binder. 2019. Finite-size scaling for a first-order transition where a continuous symetry is broken: the spin-flop transition in the three-dimensional XXZ Heisenberg antiferromagnet. Phys. Rev. E 99:023309. ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departement de Physique, CP 223, Université Libre de BruxellesBruxellesBelgium

Personalised recommendations