Advertisement

The European Physical Journal H

, Volume 43, Issue 3, pp 303–335 | Cite as

Berni Alder and the pioneering times of molecular simulation

  • Giovanni Battimelli
  • Giovanni Ciccotti
Article
  • 103 Downloads

Abstract

The paper traces the early stages of Berni Alder’s scientific accomplishments, focusing on his contributions to the development of Computational Methods for the study of Statistical Mechanics. Following attempts in the early 50s to implement Monte Carlo methods to study equilibrium properties of many-body systems, Alder developed in collaboration with Tom Wainwright the Molecular Dynamics approach as an alternative tool to Monte Carlo, allowing to extend simulation techniques to non-equilibrium properties. This led to the confirmation of the existence of a phase transition in a system of hard spheres in the late 50s, and was followed by the discovery of the unexpected long-time tail in the correlation function about a decade later. In the late 70s Alder was among the pioneers of the extension of Computer Simulation techniques to Quantum problems. Centered around Alder’s own pioneering contributions, the paper covers about thirty years of developments in Molecular Simulation, from the birth of the field to its coming of age as a self-sustained discipline.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.J. Alder, S.P. Frankel, V.A. Lewinson, 1955. Radial Distribution Function Calculated by the Monte-Carlo Method for a Hard Sphere Fluid, J. Chem. Phys. 23: 418. ADSGoogle Scholar
  2. 2.
    B.J. Alder, T.E. Wainwright, 1957. Phase Transition for a Hard Sphere System, J. Chem. Phys. 27: 1208. ADSCrossRefGoogle Scholar
  3. 3.
    B.J. Alder, T.E. Wainwright, 1958. Molecular Dynamics by Electronic Computers, in I. Prigogine (ed.), Proceedings of the International Symposium on Transport Processes in Statistical Mechanics (Brussels, August 27–31, 1956), Interscience Pub., London, pp. 97–131. Google Scholar
  4. 4.
    B.J. Alder, T.E. Wainwright, 1959a. Studies in Molecular Dynamics. I. General Method, J. Chem. Phys. 31: 459. ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    B.J. Alder, T.E. Wainwright, 1959b. Molecular Motions, Sci. Am. 201: 113. CrossRefGoogle Scholar
  6. 6.
    B.J. Alder, T.E. Wainwright, 1960. Studies in Molecular Dynamics. II. Behavior of a Small Number of Elastic Spheres, J. Chem. Phys. 33: 1439. ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    B.J. Alder, T.E. Wainwright, 1962. Phase Transition in Elastic Disks, Phys. Rev. 127: 359. ADSCrossRefGoogle Scholar
  8. 8.
    B.J. Alder, T.E. Wainwright, 1963. Investigation of the Many-Body Problem by Electronic Computers, in Percus 1963, pp. 511–522. Google Scholar
  9. 9.
    B.J. Alder, W.G. Hoover, T.E. Wainwright, 1963. Cooperative Motion of Hard Disks Leading to Melting, Phys. Rev. Lett. 11: 241. ADSCrossRefGoogle Scholar
  10. 10.
    B.J. Alder, T.E. Wainwright, 1967. Velocity Autocorrelations for Hard Spheres, Phys. Rev. Lett. 18: 988. ADSCrossRefGoogle Scholar
  11. 11.
    B.J. Alder, W.G. Hoover, D.A. Young, 1968. Studies in Molecular Dynamics. V. High-Density Equation of State and Entropy for Hard disks and spheres, J. Chem. Phys. 49:3688. ADSCrossRefGoogle Scholar
  12. 12.
    B.J. Alder, T.E. Wainwright, 1969a. Enhancement of Diffusion by Vortex-like Motion of Classical Hard Particles, J. Phys. Soc. Jpn. 26: 267. ADSGoogle Scholar
  13. 13.
    B.J. Alder, T.E. Wainwright, 1969b. Decay of Velocity Autocorrelation Function, Bull. Am. Phys. Soc. 14: 847. Google Scholar
  14. 14.
    B.J. Alder, T.E. Wainwright, 1970. Decay of Velocity Autocorrelation Function, Phys. Rev. A 1: 18. ADSCrossRefGoogle Scholar
  15. 15.
    B.J. Alder, 1972. Numerical Experiments in Statistical Mechanics, Comput. Phys. Commun. 3: 86. ADSCrossRefGoogle Scholar
  16. 16.
    B.J. Alder, 1973. Computer dynamics, Ann. Rev. Phys. Chem. 24: 325. ADSCrossRefGoogle Scholar
  17. 17.
    B.J. Alder, D.M. Ceperley, 1980. Ground-State of the Electron-Gas by a Stochastic Method, Phys. Rev. Lett. 45: 566. ADSCrossRefGoogle Scholar
  18. 18.
    B.J. Alder, 1986. Molecular-dynamics simulations, in Ciccotti, Hoover, 1986, pp. 66–80. Google Scholar
  19. 19.
    B.J. Alder, 1990. Interview (June 18, 1990), by G. Battimelli and D. Frenkel deposited at the Niels Bohr Library, American Institute of Physics, https://www.aip.org/history-programs/niels-bohr-library/oral-histories//30662.
  20. 20.
    B.J. Alder, 1992. Concluding Remarks: The Long-Time Tails Story, in M. Mareschal, B.L. Holian (eds.), Microscopic Simulations of Complex Hydrodynamic Phenomena, Plenum Press, New York, pp. 425–430. Google Scholar
  21. 21.
    B.J. Alder, 1997. An Interview with Berni Alder, by G. Michael, https://www.computer-history.info/Page1.dir/pages/Alder.html.
  22. 22.
  23. 23.
    B.J. Alder, 2009. In Memoriam: Thomas E. Wainwright (September 22, 1927–November 27, 2007), Progr. Theor. Phys. 178: 1–4. CrossRefGoogle Scholar
  24. 24.
    B.J. Alder, 2017. Interview (recorded August 29–31, 2017), by G. Battimelli and G. Ciccotti, unpublished. Google Scholar
  25. 25.
    D.M. Ceperley, 1978. Ground State of the Fermion One-Component Plasma: A Monte Carlo Study in Two and Three Dimensions, Phys. Rev. B 18: 3126. ADSCrossRefGoogle Scholar
  26. 26.
    D.M. Ceperley, M.H. Kalos, 1979. Quantum Many-Body Problems, in K. Binder (ed.), Monte Carlo Methods in Statistical Physics, Springer, pp. 145–194. Google Scholar
  27. 27.
    G. Ciccotti, W.G. Hoover (eds.), 1986. Molecular-Dynamics Simulation of Statistical-Mechanical systems, Proceedings of the XCVII Course of the International School of Physics “Enrico Fermi” (Varenna 1985), North-Holland. Google Scholar
  28. 28.
    J.J. Erpenbeck, J.D. Johnson, 2006. William Wayne Wood, Phys. Today 59: 73. ADSCrossRefGoogle Scholar
  29. 29.
    J.P. Hansen, G. Ciccotti, H.J.C. Berendsen (eds.), 1987. In Memoriam Aneesur Rahman 1927–1987, CECAM 1987. Google Scholar
  30. 30.
    N. Hardy, 1994. An Interview with Norman Hardy, by G. Michael: http://www.computer-history.info/Page1.dir/pages/Hardy.html.
  31. 31.
    B.L. Holian, W.D. Gwinn, A.C. Luntz, B.J. Alder, 1973. Predictions of Solid Helium Phase-Diagram, J. Chem. Phys. 59: 1002. CrossRefGoogle Scholar
  32. 32.
    W.G. Hoover, B.J. Alder, 1966. Cell Theories for Hard Particles, J. Chem. Phys. 45: 2361. ADSCrossRefGoogle Scholar
  33. 33.
    W.G. Hoover, B.J. Alder, 1967. Studies in Molecular Dynamics. IV. Pressure Collision Rates and Their Number Dependence for Hard Disks, J. Chem. Phys. 46: 686. ADSCrossRefGoogle Scholar
  34. 34.
    W.G. Hoover, 2017. From Ann Arbor to Sheffield: Around the World in 80 Years. I. Yokohama to Ruby Valley: Around the World in 80 Years. II, Comput. Methods Sci. Technol. 23: 133–141, 143–153. MathSciNetGoogle Scholar
  35. 35.
    J.H. Irving, J.C. Kirkwood, 1950. The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics, J. Chem. Phys. 18: 817. ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    M. Isobe, B.J. Alder, 2012. Generalized bond order parameters to characterize transient crystals, J. Chem. Phys. 137: 194501. ADSCrossRefGoogle Scholar
  37. 37.
    M.H. Kalos, 1970. Energy of a Boson Fluid with Lennard-Jones Potentials, Phys. Rev. A 2:250. ADSCrossRefGoogle Scholar
  38. 38.
    M.H. Kalos, D. Levesque, L. Verlet, 1974. Helium at Zero Temperature with Hard-Sphere and Other Forces, Phys. Rev. A 9: 2178. ADSCrossRefGoogle Scholar
  39. 39.
    J.C. Kirkwood, E.K. Maun, B.J. Alder, 1950. Radial Distribution Functions and the Equation of State of a Fluid Composed of Rigid Spherical Molecules, J. Chem. Phys. 18:1040. ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    J.C. Kirkwood, V.A. Lewinson, B.J. Alder, 1952. Radial Distribution Functions and the Equation of State of a Fluid Composed of Molecules Interacting According to the Lennard-Jones Potential, J. Chem. Phys. 20: 929. ADSCrossRefGoogle Scholar
  41. 41.
    J.M. Kosterlitz, 2017. Berni Alder and Phase Transitions in Two Dimensions, in Schwegler, et al. 2017, pp. 131–133. Google Scholar
  42. 42.
    S. Leibson, 2006. Stanley P. Frankel, Unrecognized Genius, https://www.hp9825.com/html/stan_frankel.html.
  43. 43.
  44. 44.
    M.-A. Mansigh Karlsen 2015. Interview (August 20, 2015), by D. Frenkel, unpublished. Google Scholar
  45. 45.
    M.A. Mansigh Karlsen 2017. The Early Years of Molecular Dynamics and Computers at UCRL, LRL, LLL, and LLNL, in Schwegler, et al. 2017, pp. 176–183. Google Scholar
  46. 46.
    M. Mareschal, 2018. Early Years of Computational Statistical Mechanics, Eur. Phys. J. H,  https://doi.org/10.1140/epjh/e2018-90006-7.
  47. 47.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, 1953. Equation of State Calculations by Fast Computing Machines, J. Chem. Phys. 21: 1087. ADSCrossRefGoogle Scholar
  48. 48.
    J.K. Percus (ed.), 1963. The Many-Body Problem. Proceedings of the Symposium on the Many-Body Problem held at Stevens Institute of Technology, Hoboken, New Jersey, January 28–29, 1957, Interscience Publishers, New York, London. Google Scholar
  49. 49.
    A. Rahman, 1964. Correlation in the Motion of Atoms in Liquid Argon, Phys. Rev. A 136: 405. ADSCrossRefGoogle Scholar
  50. 50.
    F. Reif, 1965. Statistical Physics. Berkeley physics course, vol. 5, McGraw-Hill, New York. Google Scholar
  51. 51.
    M.N. Rosenbluth, A.W. Rosenbluth, 1954. Further Results on Monte Carlo Equations of State, J. Chem. Phys. 22: 881. ADSCrossRefGoogle Scholar
  52. 52.
    B.F. Rozsnyai, B.J. Alder, 1976. Quantum-Statistical Models for Multicomponent Plasmas, Phys. Rev. A 14: 2295. ADSCrossRefGoogle Scholar
  53. 53.
    E. Schwegler, B.M. Rubenstein, S.B. Libby (eds.), 2017. Advances in the Computational Sciences. Symposium in Honor of Dr Berni Alder’s 90th Birthday, World Scientific 2017. Google Scholar
  54. 54.
    C.B. Tarter, 2017. Welcome and Reflections on Berni Alder, in Schwegler, et al. 2017, pp. 1–3. Google Scholar
  55. 55.
    L. Verlet, 1967. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Phys. Rev. 159: 98. ADSCrossRefGoogle Scholar
  56. 56.
    L. Verlet, 1987 The Origins of Molecular Dynamics, in Hansen, et al. 1987, pp. 6–8. Google Scholar
  57. 57.
    G.H. Vineyard, 1972. Autobiographical remarks, in P.C. Gehlen, J.R. Beeler, and R.I. Jaffe (eds.), Interatomic Potentials and Simulation of Lattice Defects, Plenum, New York, pp. XII–XVI. Google Scholar
  58. 58.
    T. Wainwright, B.J. Alder, 1958. Molecular Dynamics Computations for the Hard Sphere System, Supplemento al Nuovo Cimento IX, Ser. X (1958): 116–132. CrossRefGoogle Scholar
  59. 59.
    W.W. Wood, J.D. Jacobson, 1957. Preliminary Results from a Recalculation of the Monte Carlo Equation of State of Hard spheres, J. Chem. Phys. 27: 1207. ADSCrossRefGoogle Scholar
  60. 60.
    W.W. Wood, F.R. Parker, 1957. Monte Carlo Equation of State of Molecules Interacting with the Lennard-Jones Potential. I. A Supercritical Isotherm at about Twice the Critical Temperature, J. Chem. Phys. 27: 720. ADSCrossRefGoogle Scholar
  61. 61.
    W.W. Wood, F.R. Parker, J.D. Jacobson, 1958. Recent Monte Carlo Calculations of the Equation of State of Lennard-Jones and Hard Sphere Molecules, Supplemento al Nuovo Cimento IX, Ser. X (1958): 133–143. CrossRefGoogle Scholar
  62. 62.
    W.W. Wood, F.R. Parker, J.D. Jacobson, 1963. Recent Monte Carlo Calculations of the Equation of State of Lennard-Jones and Hard Sphere Molecules (abstract), in Percus 1963, p. 523. Google Scholar
  63. 63.
    W.W. Wood, 1986. Early History of Computer Simulations in Statistical Mechanics, in Ciccotti, Hoover, 1986, pp. 3–14. Google Scholar
  64. 64.
    W.W. Wood, 1996. On some additional recollections, and the absence thereof, about the early history of computer simulations in statistical mechanics, in K. Binder, G. Ciccotti (eds.), Monte Carlo and Molecular Dynamics of Condensed Matter Systems, Italian Physical Society, Bologna 1996, pp. 838–841. Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, University La SapienzaRomeItaly
  2. 2.Institute for Applied Mathematics “Mauro Picone” IAC-CNRRomeItaly
  3. 3.School of Physics, University College of DublinDublinIreland

Personalised recommendations