Advertisement

Century of Λ

Article

Abstract

The cosmological constant was proposed 100 years ago in order to make the model of static Universe, imagined then by most scientists, possible. Today it is the main candidate for the physical essence causing the observed accelerated expansion of our Universe. But, as well as a hundred years ago, its nature is unknown. This paper is devoted to the story of invention of Λ by Albert Einstein in 1917, rejection of it by him in 1931 and returning of it into the great science by other scientists during the century. The aim is to once again emphasize prominent role of cosmological constant in the development of ideas of modern physics and cosmology, focusing on the main points and publications, the choice of which may have a certain part of subjectivity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albrecht, A. and Steinhardt, P. 1982. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Physical Review Letters 48: 1220–1223 ADSCrossRefGoogle Scholar
  2. 2.
    Apunevych, S., Kulinich, Yu., Novosyadlyj, B. and Pelykh, V. 2009. Dark matter and dark energy in the Universe: Astrophysical reasons and theoretical models. Kinematics and Physics of Celestial Bodies 25: 55–72 ADSCrossRefGoogle Scholar
  3. 3.
    Burdyuzha, V.V. 2017. The dark components of the Universe are slowly clarified. Journal of Experimental and Theoretical Physics 124: 358–368 ADSCrossRefGoogle Scholar
  4. 4.
    Carter, B. 1974. Large Number Coincidences and the Anthropic Principle in Cosmology. IAU Symposium 63: Confrontation of Cosmological Theories with Observational Data. Dordrecht: Reidel, 291–298 Google Scholar
  5. 5.
    de Sitter, W. 1917a. On the relativity of inertia. Remarks concerning Einstein’s latest hypothesis. Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings 19: 1217–1225 ADSGoogle Scholar
  6. 6.
    de Sitter, W. 1917b. On Einstein’s Theory of Gravitation, and its Astronomical Consequences. Third paper. Monthly Notices of the Royal Astronomical Society 78: 3–27 ADSCrossRefGoogle Scholar
  7. 7.
    de Sitter, W. 1930. The expanding universe. Discussion of Lemaître’s solution of the equations of the inertial field. Bulletin of the Astronomical Institutes of the Netherlands 5: 211–218 ADSGoogle Scholar
  8. 8.
    Einstein, A. 1917. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich Preußischen Akademieder Wissenschaften (Berlin) 1: 142–152 MATHGoogle Scholar
  9. 9.
    Einstein, A. 1923. Notiz zu der Bemerkung zu der Arbeit von A. Friedmann. Über die Krümmung des Raumes. Zeitschrift für Physik 6: 228 ADSCrossRefMATHGoogle Scholar
  10. 10.
    Einstein, A. 1931. Zum kosmologischen Problem der allgemeinen Relativitätstheorie. Sitzungsber. Preuss. Akad. Wiss., phys.-math. Kl.: 235–237 Google Scholar
  11. 11.
    Einstein, A. and de Sitter, W. 1932. On the Relation between the Expansion and the Mean Density of the Universe. Contributions from the Mount Wilson Observatory 3: 51–52; Proceedings of the National Academy of Sciences of the United States of America 18: 213–214. ADSMATHGoogle Scholar
  12. 12.
    Einstein, A. 1945. On the “Cosmologic Problem”. The Meaning of Relativity, PrincetonUniversity Press, Princeton (3rd edition): 112–135 Google Scholar
  13. 13.
    Friedmann, A. 1922. Über die Krümmung des Raumes. Zeitschrift für Physik 10: 377–386 ADSCrossRefMATHGoogle Scholar
  14. 14.
    Friedmann, A. 1924. Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Zeitschrift für Physik 21: 326–333 ADSCrossRefMATHGoogle Scholar
  15. 15.
    Gliner, E. B. 1965. Algebraic Properties of the Energy-momentum Tensor and Vacuum-like States of Matter. Journal of Experimental and Theoretical Physics 49: 542–549 Google Scholar
  16. 16.
    Gliner, E. B. 1970. Vacuum-like state of medium and Friedmann’s cosmology. Soviet Physics Doklady 15: 559–565 ADSGoogle Scholar
  17. 17.
    Guth, A. H. 1981. Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D 23: 347–356 ADSCrossRefMATHGoogle Scholar
  18. 18.
    Harvey, A. and Schucking, E. 2000. Einstein’s mistake and the cosmological constant. American Journal of Physics 68: 723–728 ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Hamuy, M., Maza, J., Phillips, M. M., Suntzeff, N. B. et al. 1993. The 1990 Calan/Tololo Supernova Search. The Astronomical Journal 106: 2392–2407 ADSCrossRefGoogle Scholar
  20. 20.
    Hubble, E. 1929. A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. Contributions from the Mount Wilson Observatory 3: 23–28; Proceedings of the National Academy of Sciences of the United States of America 15: 168–173. Google Scholar
  21. 21.
    Kardashev, N. 1967. Lemaître’s Universe and Observations. The Astrophysical Journal 150: L135–L139 ADSCrossRefGoogle Scholar
  22. 22.
    Kragh, H. 2012. Preludes to dark energy: Zero-point energy and vacuum speculations. Archive for History of Exact Sciences 66: 199–240 CrossRefGoogle Scholar
  23. 23.
    Kragh, H. 2017. Georges Lemaître: An overview of his contributions to physics and cosmology. Vatican Observatory Conference, 2017, http://www.vaticanobservatory.va/content/specolavaticana/en/workshop-Lemaitre/program.html
  24. 24.
    Koksma, J.F. and Prokopec, T. 2011. The Cosmological Constant and Lorentz Invariance of the Vacuum State, arXiv:1105.6296
  25. 25.
    Lemaître, G. 1927. Un Univers homogéne de masse constante et de rayon croissant rendant compte de la vitesse radiale des nèbuleuses extra-galactiques. Annales de la Société Scientifique de Bruxelles A47: 49–59 ADSMATHGoogle Scholar
  26. 26.
    Lemaître, G. 1931. Expansion of the universe, A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae. Monthly Notices of the Royal Astronomical Society 91: 483–490 ADSCrossRefMATHGoogle Scholar
  27. 27.
    Lemaître, G. 1933. L’Univers en expansion. Annales de la Société Scientifique de Bruxelles A53: 51 ADSMATHGoogle Scholar
  28. 28.
    Lemaître, G. 1934. Evolution of the expanding universe. Proceedings of the National Academy of Sciences of the United States of America 20: 12–17 ADSCrossRefMATHGoogle Scholar
  29. 29.
    Liddle, A.R. and Lyth, D.H. 1993. The Cold Dark Matter Density Perturbation. Physics Reports 231: 1–105 ADSCrossRefGoogle Scholar
  30. 30.
    Linde, A. 1982. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Physics Letters B 108: 389–393 ADSCrossRefGoogle Scholar
  31. 31.
    Livio, M. 2011. Lost in translation: Mystery of the missing text solved. Nature 479: 171–173 ADSCrossRefGoogle Scholar
  32. 32.
    Lombriser, L. and Smer-Barreto, V. 2017. Is there another coincidence problem at the reionization epoch ? Physical Review D 96: id.123505 Google Scholar
  33. 33.
    O’Raifeartaigh, C., O’Keeffe, M., Nahm, W. and Mitton, S. 2017. Einstein’s 1917 static model of the universe: a centennial review, The European Physical Journal H 42: 431–474 ADSCrossRefGoogle Scholar
  34. 34.
    O’Raifeartaigh, C., O’Keeffe, M., Nahm, W. and Mitton, S. 2018. One Hundred Years of the Cosmological Constant: from “Superfluous Stunt” to Dark Energy, The European Physical Journal H 43: 1–45 CrossRefGoogle Scholar
  35. 35.
    Padmanabhan, T. 2006. Dark Energy: Mystery of the Millennium. AIP Conference Proceedings, 2006, 861, p. 179. ADSGoogle Scholar
  36. 36.
    Peebles, P.J.E. 1984. Tests of cosmological models constrained by inflation, The Astrophysical Journal 284: 439–444 ADSCrossRefGoogle Scholar
  37. 37.
    Perlmutter, S., Aldering, G., ... Filippenko, A.V. et al. (Supernova Cosmology Project). 1999. Measurements of Ω and Λ from 42 High-Redshift Supernovae. The Astrophysical Journal 517: 565–586 ADSCrossRefMATHGoogle Scholar
  38. 38.
    Perlmutter, S. 2011. Measuring the Acceleration of the Cosmic Expansion Using Supernovae. Nobel Lecture, December 8, 2011, https://www.nobelprize.org/nobel_prizes/physics/laureates/2011/perlmutter-lecture.pdf
  39. 39.
    Petrosian, V., Salpeter, E. and Szekeres, P. 1967. Quasi-Stellar Objects in Universes with Non-Zero Cosmological Constant. The Astrophysical Journal 147: 1222–1226 ADSCrossRefGoogle Scholar
  40. 40.
    Riess, A., Filippenko, A.V. et al. (High-z Supernova Search). 1998. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal 116: 1009–1038 Google Scholar
  41. 41.
    Riess, A.G. 2011. My Path to the Accelerating Universe. Nobel Lecture, December 8, 2011, https://www.nobelprize.org/nobel_prizes/physics/laureates/2011/riess_lecture.pdf
  42. 42.
    Schmidt, B. P., Suntzeff, N. B., ... Filippenko, A.V. et al. (High-z Supernova Search). 1998. The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type IA Supernovae. The Astrophysical Journal 507: 46–63 ADSCrossRefGoogle Scholar
  43. 43.
    Schmidt, B.P. 2011. The Path to Measuring an Accelerating Universe. Nobel Lecture, December 8, 2011, https://www.nobelprize.org/nobel_prizes/physics/laureates/2011/schmidt_lecture.pdf
  44. 44.
    Shklovsky, J. 1967. On the Nature of “standard” Absorption Spectrum of the Quasi-Stellar Objects. The Astrophysical Journal 150: L1–L3 ADSCrossRefGoogle Scholar
  45. 45.
    Starobinskii, A. A. 1979. Spectrum of relict gravitational radiation and the early state of the Universe. ZhETF Pisma Redaktsiiu 30: 719–723 ADSGoogle Scholar
  46. 46.
    Stromberg, G. 1925. Analysis of radial velocities of globular clusters and non-galactic nebulae. The Astrophysical Journal 61: 353–362 ADSCrossRefGoogle Scholar
  47. 47.
    Turner, M.S. 1999a. Cosmology Solved? Maybe. Nuclear Physics B Proceedings Supplements 72: 69–80 ADSCrossRefGoogle Scholar
  48. 48.
    Turner, M.S. 1999b. Cosmology Solved? Quite Possibly! The Publications of the Astronomical Society of the Pacific 111: 264–273 ADSCrossRefGoogle Scholar
  49. 49.
    Valdarnini, R., Kahniashvili, T. and Novosyadlyj, B. 1998. Large scale structure formationin mixed dark matter models with a cosmological constant. Astronomy & Astrophysics 336: 11–28 ADSGoogle Scholar
  50. 50.
    Weinberg, S. 1987. Anthropic bound on the cosmological constant. Physical Review Letters 59: 2607–2610 ADSCrossRefGoogle Scholar
  51. 51.
    Weinberg, S. 2008. Cosmology. Oxford University Press, New York, 612 p Google Scholar
  52. 52.
    Zel’dovich, Ya B. 1968. Cosmological Constant and the Theory of Elementary Particles. Soviet Physics Uspekhi 11: 381–393 ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    Zwicky, F. 1933. Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta 6: 110–127 ADSMATHGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Astronomical Observatory of Ivan Franko National University of LvivLvivUkraine
  2. 2.International Center of Future Science of Jilin UniversityChangchunP.R. China

Personalised recommendations