Early years of Computational Statistical Mechanics

Article

Abstract

Evidence that a model of hard spheres exhibits a first-order solid-fluid phase transition was provided in the late fifties by two new numerical techniques known as Monte Carlo and Molecular Dynamics. This result can be considered as the starting point of computational statistical mechanics: at the time, it was a confirmation of a counter-intuitive (and controversial) theoretical prediction by J. Kirkwood. It necessitated an intensive collaboration between the Los Alamos team, with Bill Wood developing the Monte Carlo approach, and the Livermore group, where Berni Alder was inventing Molecular Dynamics. This article tells how it happened.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alder B. J. 1990, Interview of Berni Alder by G. Battimelli and D. Frenkel on the American Institute of Physics web site, https://www.aip.org/history-programs/niels-bohr-library/oral-histories/30662
  2. 2.
    Alder B. J. 1992, in Microscopic Simulations of Complex Hydrodynamic Phenomena, edited by M. Mareschal and B. L. Holian (Plenum Press, New York): pp. 425–430 Google Scholar
  3. 3.
    Alder B. J. and Wainwright T. E. 1957, J. Chem. Phys. 27: 1208–1209 ADSCrossRefGoogle Scholar
  4. 4.
    Alder B. J. and Wainwright T. E. 1958, Molecular Dynamics by Electronic Computers, in International Symposium on the Statistical Mechanical Theory of Transport Processes, Brussels, 1956, edited by I. Prigogine (Interscience, New York): pp. 97–131 Google Scholar
  5. 5.
    Alder B. J. and Wainwright T. E. 1959, Mol. Mot. Sci. Am. 201: 113–126 Google Scholar
  6. 6.
    Alder B. J. and Wainwright T. E. 1963, Investigation of the Many-Body Problem by Electronic Computers, Chap. 29 in The Many-Body Problem, edited by J. K. Percus (Interscience, New York): pp. 511–522. See also the verbatim transcription of the discussions of the round table on statistical mechanics: pp. 493–509 Google Scholar
  7. 7.
    Alder B. J., Frankel S. P. and Lewinson V. A. 1955, J. Chem. Phys. 23: 417 ADSCrossRefGoogle Scholar
  8. 8.
    Anderson H. L. 1987, Los Alamos Sci. 14: 96 Google Scholar
  9. 9.
    Bernard E. P. and Krauth W. 2011, Phys. Rev. Lett. 107: 155704 ADSCrossRefGoogle Scholar
  10. 10.
    Ciccotti G. and Ferrario M. 2017, Private communication Google Scholar
  11. 11.
    Ciccotti G., Frenkel D. and McDonald I.R. (Eds.) 1987, Simulation of Liquids and Solids (North-Holland, New York) Google Scholar
  12. 12.
    Dauxois T., Peyrard M. and Ruffo S. 2005, Eur. J. Phys. 26: S3–S11 CrossRefGoogle Scholar
  13. 13.
    Feller W. 1970, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd edn. (J. Wiley, New York) Google Scholar
  14. 14.
    Gubernatis J. 2005, Phys. Plasma 12: 057303 ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Kirkwood, J. G. 1951, Crystallization as a Cooperative Phenomenon, in Phase Transformations in Solids, edited by R. Smoluchowski, J. E. Mayer and W. A. Weyl (Wiley, New York): pp. 67–76 Google Scholar
  16. 16.
    Kosterlitz J.M. 2017, in Proceedings of the Symposium in Honor of Dr. Berni Alder’s 90th Birthday, Advances in the Computational Sciences, edited by E. Schweger, B. M. Rubenstein and S. B. Libby (World Scientific) Google Scholar
  17. 17.
    Lebowitz J. L., Percus J. K. and Verlet L. 1967, Phys. Rev. 153: 250 ADSCrossRefGoogle Scholar
  18. 18.
    Metropolis N. 1987, Los Alamos Rev. 15: 125–130 MathSciNetGoogle Scholar
  19. 19.
    Metropolis N. and Ulam S. 1949, J. Am. Stat. Assoc. 44: 335–341 CrossRefGoogle Scholar
  20. 20.
    Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H. and Teller E. 1953, J. Chem. Phys. 21: 1087–1092 ADSCrossRefGoogle Scholar
  21. 21.
    Press, W. H., Teukolsky S. A., Wetterling W. T. and Flannery B. P. 2007, in Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, New York) Google Scholar
  22. 22.
    Rahman A. 1964, Phys. Rev. 136A: 405 ADSCrossRefGoogle Scholar
  23. 23.
    Rosenbluth M. N. 2003, Marshall Rosenbluth, interview by K.-H. Barth on the AIP web site, within the Niels Bohr Library and Archives, https://www.aip.org/history-programs/niels-bohr-library/oral-histories/28636-1
  24. 24.
    Rosenbluth M. N. and Rosenbluth A. W. 1954, J. Chem. Phys. 22: 881–884 ADSCrossRefGoogle Scholar
  25. 25.
    Verlet L. 1990, The Origins of Molecular Dynamics, in In Memoriam Aneesur Rahman, available from the Cecam web site’s archives, https://www.cecam.org/img/archive/In_Memoriam_Aneesur_Rahman.pdf
  26. 26.
    Wainwright T.E. and Alder B. J. 1958, Nuovo Cimento Suppl. 9: 116 CrossRefGoogle Scholar
  27. 27.
    Wood W. W. 1986, Early History of Computer Simulations in Statistical Mechanics, in Molecular-Dynamics Simulation of Statistical-Mechanics Systems, edited by G. Ciccotti and W. G. Hoover (North-Holland, New York): pp. 3–14 Google Scholar
  28. 28.
    Wood W. W. 1996, Chap. 36 in Monte Carlo and Molecular Dynamics of Condensed Matter Systems, edited by K. Binder and G. Ciccotti (Italian Physical Society): pp. 908–911 Google Scholar
  29. 29.
    Wood W. W. and Jacobson J. D. 1957, J. Chem. Phys. 27: 1207–1208 ADSCrossRefGoogle Scholar
  30. 30.
    Wood W. W., Parker F.R. and Jacobson J. D. 1958, Nuovo Cimento Suppl. 9: 133 CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, cp223, Université Libre de Bruxelles (Emeritus)BruxellesBelgium

Personalised recommendations