The European Physical Journal H

, Volume 43, Issue 3, pp 243–265 | Cite as

Geon Wheeler: from nuclear to spacetime physicist

  • Dean RicklesEmail author


We provide an account of John Wheeler’s transition from his work on elementary particle physics (in which particles provided the ultimate ontology in his worldview), to his work on gravitation and general relativity (in which spacetime geometry was the ultimate object out of which all other things were composed). We also describe his early work on quantum gravity largely as a long-standing attempt to derive the elementary particles from spacetime structure.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alkemade, A. (1994) On Vortex Atoms and Vortons. Ph.D. thesis, Technische Universiteit Delft. Google Scholar
  2. 2.
    Barrett, J. A. and P. Byrne, eds. (2012) The Everett Interpretation of Quantum Mechanics: Collected Works 1955–1980 with Commentary. Princeton University Press. Google Scholar
  3. 3.
    Bergmann, P. G. (1959) Summary of the Colloque International De Royaumont. In A. Lichnerowicz and M. Tonnelat (eds.), Les Théories Relativistes de la Gravitation (pp. 463–472). Paris: Centre National de la Recherche Scientifique, 1962. Google Scholar
  4. 4.
    Blum, A. and T. Hartz (2017) The 1957 quantum gravity meeting in Copenhagen: An analysis of Bryce S. DeWitt’s report. European Physical Journal H 42(2): 107–157. ADSCrossRefGoogle Scholar
  5. 5.
    Bromberg, J. (1982) Fusion: Science, Politics, and the Invention of a New Energy Source. Boston: MIT Press. Google Scholar
  6. 6.
    Clifford, W. K. (1982) On the space-theory of matter. In R. Tucker (ed.), Mathematical Papers. London: Macmillan. Google Scholar
  7. 7.
    DeWitt, C. and D. Rickles, eds. (2011) The Role of Gravitation in Physics: Report from the 1957 Chapel Hill Conference. Berlin: Edition Open Access.
  8. 8.
    DeWitt, B. (1967) Quantum Theory of Gravity. I. The Canonical Theory. Physical Review 160: 1113–1148. ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Einstein, A. and N. Rosen (1935) The particle problem in the general theory of relativity. Physical Review 48(1): 73–77. ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Einstein, A., L. Infeld and B. Hoffmann (1938) The Gravitational Equations and the Problem of Motion. Annals of Mathematics 39(1): 65–100. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Feynman, R. and J. Wheeler (1949) Classical Electrodynamics in Terms of Direct Interparticle Action. Reviews of Modern Physics 21(1): 425–433. ADSMathSciNetzbMATHGoogle Scholar
  12. 12.
    Finkelstein, D. and C. Misner (1959a) Some New Conservation Laws. Annals of Physics 6: 230–243. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Finkelstein, D. and C. Misner (1959b) Further Results in Topological Relativity. In A. Lichnerowicz and M. Tonnelat (eds.), Les Théories Relativistes de la Gravitation (pp. 409–413). Paris: Centre National de la Recherche Scientifique, 1962. Google Scholar
  14. 14.
    Friedman, J. and R. Sorkin (1980) Spin 1/2 from gravity. Physical Review Letters 44: 1100–1103. ADSCrossRefGoogle Scholar
  15. 15.
    Gannon,D. (1975) Singularities in non-simply connected space-times. Journal of Mathematical Physics 16(12): 2364–2367. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Giulini, D. (2009) Matter from Space. [arXiv:0910.2574].
  17. 17.
    Giulini, D. (2016) Aspects of 3-manifold theory in classical and quantum general relativity. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 86(2): 235–271. MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Grünbaum, A. (1973) The Ontology of the Curvature of Empty Space in the Geometrodynamics of Clifford and Wheeler. In P. Suppes (ed.), Space, Time and Geometry (pp. 268–295). Boston: D. Reidel Publishing Company. Google Scholar
  19. 19.
    Kaiser, D. (2000) Making Theory: Producing Physics and Physicists in Postwar America. Ph.D. dissertation, Harvard University. Google Scholar
  20. 20.
    Kragh, H. (2002) The Vortex Atom: A Victorian Theory of Everything. Centaurus 44: 32–114. MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lehmkuhl, D. (2018a) The Metaphysics of Super-substantivalism. Noûs 52(1): 24–46. CrossRefGoogle Scholar
  22. 22.
    Lehmkuhl, D. (2018b) General Relativity as a Hybrid Theory: The Genesis of Einstein’s Work on the Problem of Motion. Studies in History and Philosophy of Modern Physics DOI:  (in press).
  23. 23.
    Mehra, J. (1994) The Beat of a Different Drum: The Life and Science of Richard Feynman. Oxford: Oxford University Press. Google Scholar
  24. 24.
    Misner, C., K. Thorne, and W. Zurek (2009) John Wheeler, relativity, and quantum information. Physics Today 62(4): 40–46. CrossRefGoogle Scholar
  25. 25.
    Pauli, W. (1993) Wolfgang Pauli: Scientific Correspondence with Bohr, Einstein, Heisenberg A.O.; Vol. III: 1940–1949 (K. V. Meyenn, ed.). New York: Springer-Verlag. Google Scholar
  26. 26.
    Silliman, R. H. (1963) William Thomson: Smoke Rings and Nineteenth-Century Atomism. Isis 54(4): 461–474. CrossRefGoogle Scholar
  27. 27.
    Thompson, W. (1867) On Vortex Atoms. Proceedings of the Royal Society of Edinburgh VI: 94–105. Google Scholar
  28. 28.
    Weyl, H. (1924) Was ist Materie? Naturwissenschaften 12(30): 604–611. ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    Wheeler, J. (1946) Problems and Prospects in Elementary Particle Physics. Proceedings of the American Philosophical Society 90(1): 36–47. Google Scholar
  30. 30.
    Wheeler, J. (1955) Geons. Physical Review 97: 511–536. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Wheeler, J. (1957) On the Nature of Quantum Geometrodynamics. Annals of Physics 2: 604–614. ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    Wheeler, J. (1964) Geometrodynamics and the Issue of the Final State. In C. DeWitt and B. DeWitt (eds.), Relativity. Groups and Topology, 1963 Les Houches Lectures (pp. 317–520). New York: Gordon and Breach. Google Scholar
  33. 33.
    Wheeler, J. (1968) Superspace and Quantum Geometrodynamics. In C. DeWitt and J. Wheeler (eds.), Battelle Rencontres: 1967 Lectures in Mathematics and Physics (pp. 242–307). New York: W. A. Benjamin. Google Scholar
  34. 34.
    Wheeler, J. (1998) Geons, Black Holes, and Quantum Foam. New York: W. W. Norton and Company. Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unit for HPS, University of SydneySydneyAustralia

Personalised recommendations