The European Physical Journal H

, Volume 43, Issue 1, pp 73–117 | Cite as

One hundred years of the cosmological constant: from “superfluous stunt” to dark energy

  • Cormac O’RaifeartaighEmail author
  • Michael O’Keeffe
  • Werner Nahm
  • Simon Mitton


We present a centennial review of the history of the term known as the cosmological constant. First introduced to the general theory of relativity by Einstein in 1917 in order to describe a universe that was assumed to be static, the term fell from favour in the wake of the discovery of the expanding universe, only to make a dramatic return in recent times. We consider historical and philosophical aspects of the cosmological constant over four main epochs; (i) the use of the term in static cosmologies (both Newtonian and relativistic): (ii) the marginalization of the term following the discovery of cosmic expansion: (iii) the use of the term to address specific cosmic puzzles such as the timespan of expansion, the formation of galaxies and the redshifts of the quasars: (iv) the re-emergence of the term in today’s Λ-CDM cosmology. We find that the cosmological constant was never truly banished from theoretical models of the universe, but was marginalized by astronomers for reasons of convenience. We also find that the return of the term to the forefront of modern cosmology did not occur as an abrupt paradigm shift due to one particular set of observations, but as the result of a number of empirical advances such as the measurement of present cosmic expansion using the Hubble Space Telescope, the measurement of past expansion using type SN Ia supernovae as standard candles, and the measurement of perturbations in the cosmic microwave background by balloon and satellite. We give a brief overview of contemporary interpretations of the physics underlying the cosmic constant and conclude with a synopsis of the famous cosmological constant problem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbott, B.P. et al. 2017a. GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119(16): 161101. ADSCrossRefGoogle Scholar
  2. 2.
    Abbott, B.P et al. 2017b. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848(2): L13–L18. ADSCrossRefGoogle Scholar
  3. 3.
    Abbott, L. 1988. The mystery of the cosmological constant. Sci. Am. 258: 106–113. ADSCrossRefGoogle Scholar
  4. 4.
    Albrecht, A. and P.J. Steinhardt. 1982. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48(17): 1220–1223. ADSCrossRefGoogle Scholar
  5. 5.
    Alpher, R.A. and R.C. Herman. 1948. On the relative abundance of the elements. Phys. Rev. 74: 1737–1742. ADSCrossRefGoogle Scholar
  6. 6.
    Alpher, R.A. and R.C. Herman. 1950. Theory of the origin and relative abundance distribution of the elements. Rev. Mod. Phys. 22: 153–212. ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Alpher, R.A. and R.C. Herman. 1951. Neutron-capture theory of element formation in an expanding universe. Phys. Rev. 84: 60–68. ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Alpher, R.A., Bethe, H. and G. Gamow. 1948. The origin of chemical elements. Phys. Rev. 73(7): 803–804. ADSCrossRefGoogle Scholar
  9. 9.
    AP 1931a. Associated Press Report. Prof. Einstein begins his work at Mt. Wilson. New YorkTimes, Jan 3, p1. Google Scholar
  10. 10.
    AP 1931b. Associated Press Report. Red shift of nebulae a puzzle, says Einstein. New York Times, Feb 12, p2. Google Scholar
  11. 11.
    Ashtekar, A. 2017. Implications of a positive cosmological constant for general relativity. Rep. Prog. Phys. 80(10): 102901–102910. ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Baade, W. 1952. Extragalactic nebulae. Trs. IAU 8: 397–399. Google Scholar
  13. 13.
    Bahcall, N.A. and R Cen. 1992. Galaxy clusters and cold dark matter – a low-density unbiased universe? Astrophys. J. 398(2): L81–L84. ADSCrossRefGoogle Scholar
  14. 14.
    Baker, T., Bellini, E., Ferreira, P.G., Lagos, M., Noller, J. and I. Sawicki. 2017. Strong constraints on cosmological gravity from GW170817 and GRB 170817A. Arxiv preprint 1710.06394.
  15. 15.
    Balbi, et al. 2000. Constraints on cosmological parameters from MAXIMA-1. Astrophys. J. 545(1): L1–L4. ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Bardeen, J.M., Steinhardt and M.S. Turner. 1983. Spontaneous creation of almost scale-free density perturbations in an inflationary universe. Phys. Rev. D 28(4): 679–693. ADSCrossRefGoogle Scholar
  17. 17.
    Barrow, J.D. 2012. The Book of Universes. Vintage Books, London. Google Scholar
  18. 18.
    Barrow, J.D. and F.J. Tipler. 1986. The Anthropic Cosmological Principle. Oxford University Press, Oxford. Google Scholar
  19. 19.
    Belenkiy, A. 2012. Alexander Friedmann and the origins of modern cosmology. Phys. Today 65(10): 38–43. CrossRefGoogle Scholar
  20. 20.
    Belenkiy, A. 2013. The waters I am entering no one yet has crossed: Alexander Friedmann and the origins of modern cosmology. In Proceedings of the Conference ‘Origins of the Expanding Universe’. (Eds M. Way and D. Hunter) ASP Conf. Ser. 471: 71–96. Google Scholar
  21. 21.
    Bondi, H. 1952. Cosmology. Cambridge University Press, Cambridge. Google Scholar
  22. 22.
    Bondi, H. and T. Gold. 1948. The steady-state theory of the expanding universe. MNRAS 108: 252–270. ADSzbMATHCrossRefGoogle Scholar
  23. 23.
    Bludman, S.A. and M.A. Ruderman. 1977. Induced cosmological constant expected above thephase transition restoring the broken symmetry. Phys. Rev. Lett. 38(5): 255–257. ADSCrossRefGoogle Scholar
  24. 24.
    Brax, P. 2017. What makes the universe accelerate? A review on what dark energy could be and how to test it. To be published in Rep. Prog. Phys. Google Scholar
  25. 25.
    Bronstein, M. 1933. On the expanding universe. Phys. Zeit. Sow. 3: 73–82. zbMATHGoogle Scholar
  26. 26.
    Buckley, M.R., Feld, D., Macaluso, S., Monteux, A. and D. Shih. 2017. Cornering natural SUSY at LHC Run II and beyond. JHEP 2017(8): 115. ArXiv preprint 1610.08059. CrossRefGoogle Scholar
  27. 27.
    Burbidge, G.R. and E.M. Burbidge. 1967. Absorption lines in quasi-stellar objects. Nature 216(5120): 1092–1093. ADSCrossRefGoogle Scholar
  28. 28.
    Calder, L. and O. Lahav. 2010. Dark energy: how the paradigm shifted. Phys. World 23(1): 32–37. ADSCrossRefGoogle Scholar
  29. 29.
    Caldwell, R.R., Dave, R. and P.J. Steinhardt. 1998. Cosmological imprint of an energy component with general equation of state. Phys. Rev. Lett. 80(8): 1582–1585. ADSzbMATHCrossRefGoogle Scholar
  30. 30.
    Carroll, S.M. 2001. The cosmological constant. Liv. Rev. Rel. 4: 1–56. MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Carroll, S.M., Press, W.H. and E.L. Turner. 1992. The cosmological constant. Ann. Rev. Astron. Astrophys. 30: 499–542. ADSCrossRefGoogle Scholar
  32. 32.
    Carter, B. 1974. Large number coincidences and the anthropic principle in cosmology. In Confrontation of Cosmological Theories with Observational Data; Proceedings of the 1973 IAU Symposium (Ed. M.S. Longair) Reidel, Dordrecht. pp 291–298. Republished in Gen. Rel. Grav. 43(11): 3225–323 (2011). Google Scholar
  33. 33.
    Casimir, H.B.G. 1948. On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51(7): 793–780. zbMATHGoogle Scholar
  34. 34.
    Chaboyer, B., Demarque, P., Kernan, P.J. and L.M. Krauss. 1996. A lower limit on the age ofthe universe. Science 271(5251): 957–961. ADSCrossRefGoogle Scholar
  35. 35.
    Coleman, S. 1988. Why there is nothing rather than something; a theory of the cosmological constant. Nucl. Phys. B 310(3): 643–668. ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Creminelli, P. and F. Vernizzi. 2017. Dark energy after GW170817. ArXiv preprint 1710.05877.
  37. 37.
    de Bernardis, P. et al. 2000. A flat universe from high-resolution maps of the cosmic microwave background radiation. Nature 404(6781): 955–959. ADSCrossRefGoogle Scholar
  38. 38.
    de Sitter, W. 1917. On Einstein’s theory of gravitation and its astronomical consequences. Third paper. MNRAS 78: 3–28. ADSCrossRefGoogle Scholar
  39. 39.
    de Sitter, W. 1930a. Proceedings of the RAS. The Observatory 53: 37–39. Google Scholar
  40. 40.
    de Sitter, W. 1930b. On the distances and radial velocities of the extragalactic nebulae, and the explanation of the latter by the relativity theory of inertia. PNAS 16: 474–488. ADSzbMATHCrossRefGoogle Scholar
  41. 41.
    de Sitter, W. 1930c. The expanding universe. Discussion of Lemaître’s solution of the equations of the inertial field. Bull. Astron. Inst. Neth. 5(193): 211–218. ADSGoogle Scholar
  42. 42.
    de Sitter, W. 1931. The expanding universe. Scientia 49: 1–10. zbMATHGoogle Scholar
  43. 43.
    de Sitter, W, 1932. Kosmos: A Course of Six Lectures on the Development of Our Insight into the Structure of the Universe. Harvard University Press, Cambridge, MA. Google Scholar
  44. 44.
    Deltete, R.J. 1993. What does the anthropic principle explain? Persp. Sci. 1: 285–305. Google Scholar
  45. 45.
    Dicke, R.H. 1970. Gravitation and the Universe: Jayne Lectures for 1969. American Philosophical Society. Google Scholar
  46. 46.
    Dicke, R.H. and P.J.E. Peebles. 1979. The big bang cosmology – enigmas and nostrums. In General Relativity; an Einstein Centenary Survey (Eds S.W. Hawking and W. Israel), Cambridge University Press. pp 504–517. Google Scholar
  47. 47.
    Dirac, P.A.M. 1937. The cosmological constants. Nature 139 (3512): 323. ADSzbMATHCrossRefGoogle Scholar
  48. 48.
    Earman, J. 1987. The SAP also rises: a critical examination of the anthropic principle. Am. Phil. Quart. 24(4): 307–317. MathSciNetGoogle Scholar
  49. 49.
    Earman, J. 2001. Lambda: the constant that refuses to die. Arch. Hist. Ex. Sci. 55: 189–220. MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Eddington, A.S. 1930. On the instability of Einstein’s spherical world. MNRAS 90: 668–678. ADSzbMATHCrossRefGoogle Scholar
  51. 51.
    Eddington, A.S. 1931a. The recession of the extra-galactic nebulae. MNRAS 92: 3–6. ADSCrossRefGoogle Scholar
  52. 52.
    Eddington, A.S. 1931b. On the value of the cosmical constant. Proc. Roy. Soc. A133: 605–615. ADSzbMATHCrossRefGoogle Scholar
  53. 53.
    Eddington,A.S. 1933. The Expanding Universe. Cambridge University Press, Cambridge. Google Scholar
  54. 54.
    Efstathiou, G., Sutherland, W.J. and S.J. Maddox. 1990. The cosmolgical constant and cold dark matter. Nature 348: 705–707. ADSCrossRefGoogle Scholar
  55. 55.
    Einstein, A. 1915a. Die Feldgleichungen der Gravitation. Sitz. König. Preuss. Akad. 844–847. Or ‘ The field equations of gravitation’ CPAE 6 (Doc. 25). Google Scholar
  56. 56.
    Einstein, A. 1915b. Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. Sitz. König. Preuss. Akad. 831–839. Or ‘ Explanation of the perhelion motion of Mercury from the general theory of relativity’ CPAE 6 (Doc. 24). Google Scholar
  57. 57.
    Einstein, A. 1916. Die Grundlage der allgemeinen Relativitätstheorie. Ann. Physik. 49: 769–822. Or ‘The foundation of the general theory of relativity’ CPAE 6 (Doc. 30). ADSzbMATHCrossRefGoogle Scholar
  58. 58.
    Einstein, A. 1917a. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Sitz. König. Preuss. Akad. 142–152. Or ‘Cosmological considerations in the general theory of relativity’ CPAE 6 (Doc. 43). Google Scholar
  59. 59.
    Einstein, A. 1917b. Letter to Willem de Sitter, March 12th. CPAE 8 (Doc. 311). Google Scholar
  60. 60.
    Einstein, A. 1917c. Letter to Felix Klein, March 26th. CPAE 8 (Doc. 319). Google Scholar
  61. 61.
    Einstein, A. 1917d. Letter to Willem de Sitter, April 14th. CPAE 8 (Doc. 325). Google Scholar
  62. 62.
    Einstein, A. 1918a. Bemerkung zu Herrn Schrödingers Notiz “über ein Lösungssystem der allgemein kovarianten Gravitationsgleichungen”. Phys. Zeit. 19: 165–166. Or Comment on Schrödinger’s Note “On a system of solutions for the generally covariant gravitational field equations” CPAE 7 (Doc. 3). zbMATHGoogle Scholar
  63. 63.
    Einstein 1918b. Letter to Michele Besso, July 29th. CPAE 8 (Doc. 591). Google Scholar
  64. 64.
    Einstein 1918c. Letter to Michele Besso, August 20th. CPAE 8 (Doc. 604). Google Scholar
  65. 65.
    Einstein 1918d. Über die Spezielle und die Allgemeine Relativitätstheorie. Vieweg (Braunschweig). 3rd Edition. CPAE 6 (Doc. 42). Google Scholar
  66. 66.
    Einstein, A. 1918e. Kritisches zu einer von Hrn. De Sitter gegebenen Lösung der Gravitationsgleichungen. Sitz. König. Preuss. Akad. 270–272. Or‘Critical comment on a solution of the gravitational field equations given by Mr. de Sitter’ CPAE 7 (Doc. 5). Google Scholar
  67. 67.
    Einstein, A. 1919a. Spielen Gravitationsfelder im Aufbau der materiellen Elementarteilchen eine wesentliche Rolle? Sitz. König. Preuss. Akad. 349–356. Or ‘Do gravitation fields play an essential part in the structure of the elementary particles of matter?’CPAE 7 (Doc. 17). Google Scholar
  68. 68.
    Einstein, A. 1919b. Bermerkung über periodischen Schwankungen der Mondlänge, welche bisher nach der Newtonschen Mechanik nicht erklärbar schienen. Sitz. König. Preuss. Akad. 433–436. Or ‘Comment about periodical fluctuations of lunar longitude,which so far appeared to be inexplicable in Newtonian mechanics’ CPAE 7 (Doc. 18). Google Scholar
  69. 69.
    Einstein, A. 1921a. Geometrie und Erfahrung. Springer, Berlin. Or ‘Geometry and Experience’. CPAE 7 (Doc. 52). Google Scholar
  70. 70.
    Einstein, A. 1921b. Eine einfache Anwendung des Newtonschen Gravitationsgesetzes auf die kugelförmigen Sternhaufen. In Festschrift der Kaiser-Wilhelm-Gesellschaft zur Förderung der Wissenschaften. Springer, Berlin. pp 50–52. Or ‘A simple application of the Newtonian law of gravitation to globular star clusters’ CPAE 7 (Doc. 56). Google Scholar
  71. 71.
    Einstein, A. 1922a. Vier Vorlesungen über Relativitätstheorie. Vieweg, Berlin. Or The Meaning of Relativity. Methuen, London (Transl. E. Adams). CPAE 7 (Doc. 71). Google Scholar
  72. 72.
    Einstein, A. 1922b. Bemerkung zu der Arbeit von A. Friedmann “Über die Krümmung des Raumes” Zeit. Phys. 11: 326. Or ‘Comment on A. Friedmann’s paper “On The Curvature of Space” CPAE 13 (Doc. 340). ADSzbMATHCrossRefGoogle Scholar
  73. 73.
    Einstein, A. 1923a. Notiz zu der Arbeit von A. Friedmann “Über die Krümmung des Raumes” Zeit. Phys. 16: 228. Or ‘Note to the paper by A. Friedmann “On the Curvature of Space” CPAE 14 (Doc. 51). ADSzbMATHCrossRefGoogle Scholar
  74. 74.
    Einstein, A. 1923b. Notiz zu der Arbeit von A. Friedmann “Über die Krümmung des Raumes”. The Albert Einstein Archives. Doc. 1–26. Google Scholar
  75. 75.
    Einstein, A. 1923c. Postcard to Hermann Weyl, May 23rd. CPAE 14 (Doc. 40). Google Scholar
  76. 76.
    Einstein, A. 1931a. Zum kosmologischen Problem der allgemeinen Relativitätstheorie. Sitz. König. Preuss. Akad. 235–237. Eng. transl. (O’Raifeartaigh and McCann 2014). Google Scholar
  77. 77.
    Einstein, A. 1931b. Zum kosmologischen Problem. Albert Einstein Archive Online, Doc.[2–112]. Eng. transl. (O’Raifeartaigh et al. 2014).
  78. 78.
    Einstein, A. 1933. Sur la structure cosmologique de l’espace (Fr. transl. M. Solovine). In ‘La Théorie de la Relativité’, Hermann, Paris. (Eng. transl. O’Raifeartaigh et al. 2015). Google Scholar
  79. 79.
    Einstein, A. 1945. On the ‘cosmologic problem’. Appendix I to The Meaning of Relativity. Princeton University Press, Princeton (3rd Ed.) 112–135. Google Scholar
  80. 80.
    Einstein, A.and W. de Sitter. 1932. On the relation between the expansion and the mean density of the universe. PNAS 18(3): 213–214. ADSzbMATHCrossRefGoogle Scholar
  81. 81.
    Ellis, G.F.R. 2003. A historical review of how the cosmological constant has fared in general relativity and cosmology. Cha. Sol. Fract. 16: 505–512. ADSzbMATHCrossRefGoogle Scholar
  82. 82.
    Ellis, G.F.R. 2011. Editorial note to: Brandon Carter, Large number coincidences and the anthropic principle in cosmology. Gen. Rel. Grav. 43(11): 3213–3223. ADSzbMATHCrossRefGoogle Scholar
  83. 83.
    Ellis, G.F.R. and R. Maartens. 2004. The emergent universe: inflationary cosmology with no singularity. Class. Quant. Gravity 21: 223–239. ADSMathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Enz, C.P. 1974. Is the Zero-Point Energy Real? In Physical Reality and Mathematical Description (Eds C.P. Enz and J. Mehra) Reidel, Dordrecht. pp 124–132. Google Scholar
  85. 85.
    Enz, C.P. and A. Thellung. 1960. Nullpunktsenergie und Anordnung nicht vertauschbarer Faktoren im Hamiltonoperator. Helv. Phys. Acta 33: 839–848. MathSciNetzbMATHGoogle Scholar
  86. 86.
    Ezquiaga, J.M. and M. Zumalacárregui. 2017. Dark energy after GW170817: Dead ends and the road ahead. Phys. Rev. Lett. 119: 251304–251315. ADSCrossRefGoogle Scholar
  87. 87.
    Pedro Ferreira, P. 2007. The State of the Universe: A Primer in Modern Cosmology. Phoenix, London. pp 251–254. Google Scholar
  88. 88.
    Freedman, W.L. et al. 1994. Distance to the Virgo cluster galaxy M100 from Hubble Space Telescope observations of Cepheids. Nature 371(6500): 757–762. ADSCrossRefGoogle Scholar
  89. 89.
    Freese, K., Adams, F.C., Frieman, J.A. and E. Mottola. 1987. Cosmology with decaying vacuum energy Nucl. Phys. B 287: 797–814. ADSCrossRefGoogle Scholar
  90. 90.
    Friedman, A. 1922. Über die Krümmung des Raumes Zeit. Physik. 10: 377–386. Available in English translation as ‘On the curvature of space’ Gen. Rel. Grav. 31(12): 1991–2000 (1999). CrossRefGoogle Scholar
  91. 91.
    Fujii, Y. 2000. Quintessence, scalar-tensor theories and non-Newtonian gravity. Phys. Rev. D 62(4): 4011–4022. ArXiv preprint 9911064. ADSCrossRefGoogle Scholar
  92. 92.
    Fujii, Y. and T. Nishioka. 1991. Reconciling a small density parameter to inflation. Phys. Lett. B 254: 347–350. ADSCrossRefGoogle Scholar
  93. 93.
    Gamow, G. 1942. Concerning the origin of chemical elements. JWAS 32(12): 353–335. Google Scholar
  94. 94.
    Gamow, G. 1946. Expanding universe and the origin of elements. Phys. Rev. 70(7–8): 572–573. ADSCrossRefGoogle Scholar
  95. 95.
    Gamow, G. 1949. On relativistic cosmogony. Rev. Mod. Phys. 21(3): 367–373. ADSCrossRefGoogle Scholar
  96. 96.
    Gamow, G. 1956. The evolutionary universe. Sci. Am. 195(3): 136–156. CrossRefGoogle Scholar
  97. 97.
    Gamow, G. 1970. My World Line: An Informal Autobiography. Viking Press, New York. Google Scholar
  98. 98.
    Gamow, G. and E. Teller. 1939a. On the origin of great nebulae. Phys. Rev. 55: 654–657. ADSzbMATHCrossRefGoogle Scholar
  99. 99.
    Gamow, G. and E. Teller. 1939b. The expanding universe and the origin of the great nebulæ. Nature 143(3612): 116–117. ADSzbMATHCrossRefGoogle Scholar
  100. 100.
    Goldsmith, D. 2000. The Runaway Universe: the Race to Find the Future of the Cosmos. Basic Books, New York. Google Scholar
  101. 101.
    Goldstein, A. et al. 2017. An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A. Astrophys. J. Lett. 848(2): L14–L28. ADSCrossRefGoogle Scholar
  102. 102.
    Gott, J.R., Gunn, J.E., Schramm, D.N. and B.M. Tinsley. 1974. An unbound universe. Astrophys. J. 194: 543–553. ADSCrossRefGoogle Scholar
  103. 103.
    Gliner, E.B. 1966. Algebraic properties of the energy-momentum tensor and vacuum-like states of matter. JETP 22: 378–382. ADSGoogle Scholar
  104. 104.
    Guendelman, E.I. 2011. Non-singular origin of the universe and the cosmological constant problem. Int. J. Mod. Phys. D 20(14): 2767–2771. ADSMathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    Guendelman, E.I. and P. Labraña. 2013. Connecting the nonsingular origin of the universe, the vacuum structure and the cosmological constant problem. Int. J. Mod. Phys. D 22(9): 13300181–133001835. MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    Gunn, J.E. 1975. On the mean mass density in the universe. Ann. N.Y. Acad. Sci. 262: 21–29. ADSCrossRefGoogle Scholar
  107. 107.
    Gunn, J.E. and J.B. Oke, 1975. Spectrophotometry of faint cluster galaxies and the Hubble diagram: an approach to cosmology. Astrophys. J. 195: 255–268. ADSCrossRefGoogle Scholar
  108. 108.
    Gunn, J.E. and B.M. Tinsley. 1975. An accelerating universe. Nature 257: 454–457. ADSCrossRefGoogle Scholar
  109. 109.
    Guth, A.H. 1981. The inflationary universe: a possible solution for the horizon and flatness problems. Phys. Rev. D 23: 347–356. ADSzbMATHCrossRefGoogle Scholar
  110. 110.
    Guth, A.H. and S.-Y. Pi. 1982. Fluctuations in the new inflationary universe. Phys. Rev. Lett. 49: 1110–1113. ADSCrossRefGoogle Scholar
  111. 111.
    Hanany, S. et al. 2000. MAXIMA-1: A measurement of the cosmic microwave background anisotropy on angular scales of 10-5. Astrophys. J. 545(1): L5–L9. ADSCrossRefGoogle Scholar
  112. 112.
    Harvey, A. 2009. Dark energy and the cosmological constant: a brief introduction. Eur. J. Phys. 30: 877–889. zbMATHCrossRefGoogle Scholar
  113. 113.
    Harvey, A. 2012a. The cosmological constant. ArXiv preprint 1211.6337.
  114. 114.
    Harvey, A. 2012b. How Einstein discovered dark energy. ArXiv preprint 1211.6338.
  115. 115.
    Harvey, A. and E. Schucking. 2000. Einstein’s mistake and the cosmological constant Am. J. of Phys. 68: 723–728. ADSMathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    Hawking, S.W. 1983. The cosmological constant. Philos. Trans. R. Soc. Lond. A310(1512): 303–309. ADSCrossRefGoogle Scholar
  117. 117.
    Hawking, S.W. 1984. The cosmological constant is probably zero. Phys. Lett. B 134 (6): 403–404. ADSCrossRefGoogle Scholar
  118. 118.
    Heckmann, O. 1931. Über die Metrik des sich ausdehnenden Universums. Nach. Gesell. Wiss. Göttingen, Math.-Phys. Klasse 2: 126–131. zbMATHGoogle Scholar
  119. 119.
    Heckmann, O. 1932. Die Ausdehnung der Welt in ihrer Abhängigkeit von der Zeit. Nach. Gesell. Wiss. Göttingen, Math.-Phys. Klasse 2: 181–190. zbMATHGoogle Scholar
  120. 120.
    Hoyle, F. 1948. A new model for the expanding universe. MNRAS 108: 372–382. ADSzbMATHCrossRefGoogle Scholar
  121. 121.
    Hoyle, F. 1994. Home Is Where The Wind Blows: Chapters From A Cosmologists’s Life. University Science Books, California. Google Scholar
  122. 122.
    Hoyle, F. and Burbidge, G.R. 1966. Relation between the redshifts of quasi-stellar objects and their radio magnitudes. Nature 212: 1334. CrossRefGoogle Scholar
  123. 123.
    Hoyle, F. and A. Sandage. 1956. The second-order term in the redshift-magnitude relation. Pub. Ast. Soc. Pac. 68(403): 301–307. ADSCrossRefGoogle Scholar
  124. 124.
    Hubble, E. 1925. Cepheids in spiral nebulae. The Observatory 48: 139–142. ADSGoogle Scholar
  125. 125.
    Hubble, E. 1929. A relation between distance and radial velocity among extra-galactic nebulae. PNAS 15: 168–173. ADSzbMATHCrossRefGoogle Scholar
  126. 126.
    Hubble, E. and M.L. Humason. 1931. The velocity-distance relation among extra-galactic nebulae. Astrophys. J. 74: 43–80. ADSCrossRefGoogle Scholar
  127. 127.
    Humason, M.L., Mayall, N.U. and A.R. Sandage. 1956. Redshifts and magnitudes of extragalactic nebulae. Astron. J. 61: 97–162. ADSCrossRefGoogle Scholar
  128. 128.
    Huterer, D. and D.L. Shafer. 2017. Dark energy two decades after: observables, probes, consistency tests. To be published in Rep. Prog. Phys. ArXiv preprint 1710.06394.
  129. 129.
    Jackson, J.C. 1970. The dynamics of clusters of galaxies in universes with non-zero cosmological constant, and the virial theorem mass discrepancy. MNRAS 148: 249–260. ADSCrossRefGoogle Scholar
  130. 130.
    Jaffe, A.H. et al. 2001. Cosmology from MAXIMA-1, BOOMERANG, and COBE DMR cosmic microwave background observations. Phys. Rev. Lett. 86(16): 3475–3479. ADSCrossRefGoogle Scholar
  131. 131.
    Jaffe, R.L. 2005. Casimir effect and the quantum vacuum. Phys. Rev. D 72(2): 021301. ADSCrossRefGoogle Scholar
  132. 132.
    Jordan, P. and W. Pauli. 1928. Zur Quantenelektrodynamik ladungsfreier Felder. Zeit. Phys. 47: 151–173. ADSzbMATHCrossRefGoogle Scholar
  133. 133.
    Kardashev, N. 1967. Lemaître’s universe and observations. Astrophys. J. 150: L135–L139. ADSCrossRefGoogle Scholar
  134. 134.
    Kazanas, D. 1980. Dynamics of the universe and spontaneous symmetry breaking. Astrophys. J. Lett. 150: L135–L145. Google Scholar
  135. 135.
    Kirshner, R.P. 2002. The Extravagant Universe: Exploding Stars, Dark Energy and the Accelerating Cosmos. Princeton University Press, Princeton. Google Scholar
  136. 136.
    Kofman, L.A. and A.A. Starobinsky. 1985. Effect of the cosmological constant on largescaleanisotropies in the microwave background. Sov. Ast. Lett. 11: 271–274. ADSGoogle Scholar
  137. 137.
    Kofman, L. Gnedin, N. and N. Bahcall. 1993. Cosmological constant, COBE cosmic microwave background anisotropy, and large-scale clustering. Astrophys. J. 413(1): 1–9. ADSCrossRefGoogle Scholar
  138. 138.
    Kolb, E.W. and M.S. Turner. 1990. The Early Universe. Addison-Wesley, New York. Google Scholar
  139. 139.
    Kragh, H.S. 1996. Cosmology and Controversy. Princeton University Press, Princeton. Google Scholar
  140. 140.
    Kragh, H.S. 2007. Conceptions of Cosmos: From Myths to the Accelerating Universe: A History of Cosmology. Oxford University Press, Oxford. Google Scholar
  141. 141.
    Kragh, H. 2010. An anthropic myth: Fred Hoyle’s carbon-12 resonance level. Arch. Hist. Ex. Sci. 64(3): 721–751. MathSciNetCrossRefGoogle Scholar
  142. 142.
    Kragh, H.S. 2012. Preludes to dark energy: zero-point energy and vacuum speculations. Arch. Hist. Ex. Sci. 66(3): 199–240. MathSciNetCrossRefGoogle Scholar
  143. 143.
    Kragh, H. 2015. On Arthur Eddington’s theory of everything. ArXiv preprint 1510.04046.
  144. 144.
    Kragh, H. and D. Lambert. 2007. The context of discovery: Lemaître and the origin of the primeval-atom universe. Ann. Sci. 445–470. Google Scholar
  145. 145.
    Kragh, H.S. and J.M. Overduin. 2014. The Weight of the Vacuum: A Scientific History of Dark Energy. Springer, Berlin. Google Scholar
  146. 146.
    Krauss, L.M. 1998. The end of the age problem, and the case for a cosmological constant revisited. Astrophys. J. 501: 461–466. ADSCrossRefGoogle Scholar
  147. 147.
    Krauss, L.M. and D.N. Schramm. 1993. Angular diameters as a probe of a cosmological constant and Omega. Astrophys. J. 405(2): L43–L46. ADSCrossRefGoogle Scholar
  148. 148.
    Krauss, L.M. and M.S. Turner. 1995. The cosmological constant is back. Gen. Rel. Grav. 27(11): 1137–1144. ADSzbMATHCrossRefGoogle Scholar
  149. 149.
    Krauss, L.M. and M. White. 1992. Gravitational lensing, finite galaxy cores, and the cosmological constant. Astrophys. J. 394(2): 385–395. ADSCrossRefGoogle Scholar
  150. 150.
    Lahav, O. and A.R. Liddle. 2016. The cosmological parameters 2016. In The Review of Particle Physics (Particle Data Group). Chin. Phys. C 40(10): 386–393. Google Scholar
  151. 151.
    Laplace, P.-S. 1846. Mécanique Céleste 5. Book 16, p.481. Google Scholar
  152. 152.
    Lemaître, G. 1925. Note on de Sitter’s universe. J. Math. Phys. 4: 188–192. zbMATHCrossRefGoogle Scholar
  153. 153.
    Lemaître, G. 1927. Un univers homogène de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Ann. Soc. Sci. Brux. A47: 49–59. See also (Luminet 2013). zbMATHGoogle Scholar
  154. 154.
    Lemaître,G. 1931a. A homogeneous universe of constant mass and increasing radius, accounting for the radial velocity of the extra-galactic nebulae. MNRAS 91: 483–490. ADSzbMATHCrossRefGoogle Scholar
  155. 155.
    Lemaître, G. 1931b. The beginning of the world from the point of view of quantum theory. Nature 127: 706. ADSzbMATHCrossRefGoogle Scholar
  156. 156.
    Lemaître, G. 1931c. The expanding universe. MNRAS 91: 490–501. ADSzbMATHCrossRefGoogle Scholar
  157. 157.
    Lemaître, G. 1931d. L’expansion de l’espace. Rev. Quest. Sci. 20: 391–410. zbMATHGoogle Scholar
  158. 158.
    Lemaître, G. 1933. L’ universe en expansion. Ann. Soc. Sci. Brux A53: 51–85. Eng. transl. ‘The expanding universe’ Gen. Rel. Grav. 29(5): 641–680 (1997). Google Scholar
  159. 159.
    Lemaître, G. 1934. Evolution of the expanding universe. PNAS 20: 12–17. ADSzbMATHCrossRefGoogle Scholar
  160. 160.
    Lemaître, G. 1949. The cosmological constant. In Albert Einstein: Philosopher Scientist, The Library of Living Philosophers VII (Ed. P.A. Schilpp). George Banta, Wisconsin. pp 439–456. Google Scholar
  161. 161.
    Lemaître, G. 1958. Recontres avec Einstein. Rev. Quest. Sci. 129: 129–132. Google Scholar
  162. 162.
    Lenz, W. 1926. Das Gleichgewicht von Materie und Strahlung in Einsteins geschlossener Welt. Phys. Zeit. 27: 642–645. zbMATHGoogle Scholar
  163. 163.
    Linde, A.D., 1974. Is the Lee constant a cosmological constant? JETP Lett. 19: 183–184. ADSGoogle Scholar
  164. 164.
    Linde, A.D. 1982. A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108(6): 389–393. ADSCrossRefGoogle Scholar
  165. 165.
    Linde, A.D. 1984. The inflationary universe. Rep. Prog. Phys. 47: 925–986. ADSMathSciNetCrossRefGoogle Scholar
  166. 166.
    Linde, A.D. 1986. Eternal chaotic inflation. Mod. Phys. Lett. A 1(2): 81–85. ADSMathSciNetCrossRefGoogle Scholar
  167. 167.
    Linde, A.D. 2008. Inflationary cosmology. In Lect. Notes Phys. 738. Springer, Berlin. Google Scholar
  168. 168.
    Livio, M. 2013. Brilliant Blunders: from Darwin to Einstein. Simon and Schuster, New York. Google Scholar
  169. 169.
    Livio, M. and M.J. Rees. 2005. Anthropic reasoning. Science 309: 1022–1023. ADSCrossRefGoogle Scholar
  170. 170.
    Lombriser, L. and A. Taylor. 2016. Breaking a dark degeneracy with gravitational waves. JCAP 03.031. Google Scholar
  171. 171.
    Lombriser, L. and N.A. Lima. 2017. Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure. Phys. Lett. B 765: 382–385. ADSzbMATHCrossRefGoogle Scholar
  172. 172.
    Longair, M.S. 2006. The Cosmic Century: A History of Astrophysics and Cosmology. Cambridge University Press, Cambridge. Google Scholar
  173. 173.
    Longair, M.S. and P.A.G. Scheuer. 1967. Red-shift magnitude relation for quasi-stellar objects. Nature 215(5104): 919–922. ADSCrossRefGoogle Scholar
  174. 174.
    Loveday, J., Efstathiou, G., Peterson, B.A. and S.J. Maddox. 1992. Large-scale structure in the universe – results from the Stromlo-APM redshift survey. Astrophys. J. 400(2): L43–L46. ADSCrossRefGoogle Scholar
  175. 175.
    Luminet, J.-P. 2013. Editorial note to ‘A homogeneous universe of constant mass and increasing radius, accounting for the radial velocity of the extra-galactic nebulae’. Gen. Rel. Grav. 45(8): 1619–1633. ADSMathSciNetzbMATHCrossRefGoogle Scholar
  176. 176.
    Maneff, G. 1932. Über das kosmologische Problem der Relativitätstheorie. Zeit. Astrophys. 4: 231–240. ADSzbMATHGoogle Scholar
  177. 177.
    McCrea, W.H. 1951. Relativity theory and the creation of matter. Proc. R. Soc. A206(1087): 562–575. ADSMathSciNetzbMATHCrossRefGoogle Scholar
  178. 178.
    McCrea, W.H. 1971. The cosmical constant. Q. J. R. Ast. Soc. 12: 140–153. ADSGoogle Scholar
  179. 179.
    Milne, E.A. 1933. World-Structure and the Expansion of the Universe. Zeit. Astrophys. 6: 1–95. ADSzbMATHGoogle Scholar
  180. 180.
    Milne, A. 1935. Relativity, Gravitation and World Structure. Clarendon Press, Oxford. Google Scholar
  181. 181.
    Neumann, C. 1896. Allgemeine Untersuchungen über das Newton’sche Prinzip der Fernwirkungen. Teubner, Leipzig. Google Scholar
  182. 182.
    Milonni, P.W. 1994. The Quantum Vacuum. Academic, New York. Google Scholar
  183. 183.
    North, J.D. 1965. The Measure of the Universe: A History of Modern Cosmology. Oxford University Press Google Scholar
  184. 184.
    Nernst, W. 1916. Über einen Versuch, von quantentheoretischen Betrachtungen zur Annahmestetiger Energieänderungen zurückzukehren. Verh. Dtsch. Phys. Ges. 18: 83–116. Google Scholar
  185. 185.
    Norton, J.D. 1999. The cosmological woes of Newtonian gravitation theory. In ‘The Expanding Worlds of General Relativity: Einstein Studies Vol.7’ (Eds H. Goenner et al.) Birkhäuser, Boston. pp. 271–322. Google Scholar
  186. 186.
    Nussbaumer, H. 2014a. Einstein’s conversion from his static to an expanding universe. Eur. Phys. J. (H) 39(1): 37–62. Google Scholar
  187. 187.
    Nussbaumer, H. 2014b. Einstein’s aborted model of a steady-state universe. To be published in “In memoriam Hilmar W. Duerbeck” Acta Historica Astronomiae. (Eds W. Dick et al.). ArXiv preprint 1402.4099.
  188. 188.
    Nussbaumer, H. and L. Bieri. 2009. Discovering the Expanding Universe. Cambridge University Press, Cambridge. Google Scholar
  189. 189.
    Oort, J. 1932. The force exerted by the stellar system in a direction perpendicular to the galactic plane and some related problems. Bull. Astron. Inst. Neth. 6: 249–287. ADSzbMATHGoogle Scholar
  190. 190.
    O’Raifeartaigh, C. and B. McCann. 2014. Einstein’s cosmic model of 1931 revisited; an analysis and translation of a forgotten model of the universe. Eur. Phys. J. (H) 39(1): 63–85. Google Scholar
  191. 191.
    O’Raifeartaigh, C., McCann, B., Nahm, W. and S. Mitton. 2014. Einstein’s steady-state theory: an abandoned model of the cosmos. Eur. Phys. J. (H) 39(3):353–369. Google Scholar
  192. 192.
    O’Raifeartaigh, C., O’Keeffe, M., Nahm, W. and S. Mitton. 2015. Einstein’s cosmology review of 1933: a new perspective on the Einstein-de Sitter model of the cosmos. Eur. Phys. J. (H) 40(3): 301–336. Google Scholar
  193. 193.
    O’Raifeartaigh, C., O’Keeffe, M., Nahm, W. and S. Mitton. 2017. Einstein’s 1917 static model of the cosmos: a centennial review. Eur. Phys. J. (H) 42(3): 431–474. Google Scholar
  194. 194.
    Ostriker, J.P. and S. Mitton. 2013. Heart of Darkness: Unravelling the Mysteries of the Invisible Universe. Princeton University Press, Princeton. Google Scholar
  195. 195.
    Ostriker, J.P. and P.J. Steinhardt. 1995. The observational case for a low-density Universe with a non-zero cosmological constant. Nature 377(6550): 600–602. ADSCrossRefGoogle Scholar
  196. 196.
    Pagels, H.R. 1985. A cozy cosmology. The Sciences 25(2): 34–38. CrossRefGoogle Scholar
  197. 197.
    Pauli, W. 1933. Die allgemeinen Prinzipien der Wellenmechanik. In Handbuch der Physik, Quantentheorie 24(1) (Eds. H. Bethe et al.) Springer, Berlin. pp 83–272. Google Scholar
  198. 198.
    Pauli, W. 1946. Exclusion principle and quantum mechanics. In Nobel Lectures in Physics 1942–1962. Elsevier, Amsterdam 1964. Google Scholar
  199. 199.
    Pauli, W. 1958. Theory of Relativity. Pergamon Press, New York. Google Scholar
  200. 200.
    Peebles, P.J.E. 1976. A cosmic virial theorem. Astrophys. J. Lett. 205: L109–L113. ADSCrossRefGoogle Scholar
  201. 201.
    Peebles, P.J.E. 1984. Tests of cosmological models constrained by inflation. Astrophys. J. 284: 439–444. ADSCrossRefGoogle Scholar
  202. 202.
    Peebles, P.J.E. 1986. The mean mass density of the universe. Nature 321: 27–32. ADSCrossRefGoogle Scholar
  203. 203.
    Peebles, P.J.E. and B. Ratra. 1988. Cosmology with a time-variable cosmological ‘constant’. Astrophys. J. Lett. 325: L17–L20. ADSCrossRefGoogle Scholar
  204. 204.
    Peebles, P.J.E. and B. Ratra. 2003. The cosmological constant and dark energy. Rev. Mod. Phys. 75(2): 559–606. ADSMathSciNetzbMATHCrossRefGoogle Scholar
  205. 205.
    Perlmutter, S. et al. 1999. Measurements of Ω and Λ from 42 high redshift supernovae. Astrophys. J. 517: 565–586. ADSzbMATHCrossRefGoogle Scholar
  206. 206.
    Petrosian, V. 1974. Confrontation of Lemaître models and the cosmological constant with observations. In Confrontation of Cosmological Theories with Observational Data: Proceedings of the 1973 IAU Symposium (Ed. M. Longair) Reidel, Dordrecht. Google Scholar
  207. 207.
    Petrosian, V. and E. Salpeter. 1970. Lemaître models and the cosmological constant. Comm. Ast. Sp. Phys. 2: 109–115. ADSGoogle Scholar
  208. 208.
    Petrosian, V., E. Salpeter. and P. Szekeres. 1967. Quasi-stellar objects in universes with non-zero cosmological constant. Astrophys. J. 147: 1222–1226. ADSCrossRefGoogle Scholar
  209. 209.
    Pierce, M.J. et al. 1994. The Hubble constant and Virgo cluster distance from observations of Cepheid variables. Nature 371(6496): 385–389. ADSCrossRefGoogle Scholar
  210. 210.
    Planck, M. 1911. Eine neue Strahlungshypothese. Verh. Dtsch. Phys. Ges. 13: 138–148. zbMATHGoogle Scholar
  211. 211.
    Planck Collaboration XIII 2016. Cosmological parameters. Astron. and Astrophys. 594(A13): 1–63. Google Scholar
  212. 212.
    Ratra, B. and P.J.E. Peebles. 1988. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 37(12): 3406–3427. ADSCrossRefGoogle Scholar
  213. 213.
    Ray, C. 1990. The cosmological constant: Einstein’s greatest mistake? Stud. Hist. Phil. Sci. A 21(4): 589–604. MathSciNetCrossRefGoogle Scholar
  214. 214.
    Realdi, M. and G. Peruzzi. 2009. Einstein, de Sitter and the beginning of relativistic cosmology in 1917. Gen. Rel. Grav. 41(2): 225–247. ADSMathSciNetzbMATHCrossRefGoogle Scholar
  215. 215.
    Riess, A.G. et al. 1998. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116: 1009–1038. ADSCrossRefGoogle Scholar
  216. 216.
    Rindler, W. 1969. Essential Relativity: Special, General, and Cosmological. Van Nostrand, New York. Google Scholar
  217. 217.
    Robertson, H.P. 1932. The expanding universe. Science 76: 221–226. ADSzbMATHCrossRefGoogle Scholar
  218. 218.
    Robertson, H.P. 1933. Relativistic cosmology. Rev. Mod. Phys. 5(1): 62–90. ADSzbMATHCrossRefGoogle Scholar
  219. 219.
    Robertson, H.P. 1935. Kinematics and world-structure. Astrophys. J. 82: 284–301. ADSzbMATHCrossRefGoogle Scholar
  220. 220.
    Robertson, H.P. 1955. The theoretical aspects of the nebular redshift. Pub. Ast. Soc. Pac. 67(395): 82–98. ADSCrossRefGoogle Scholar
  221. 221.
    Rowan-Robinson, M. 1968. On cosmological models with an antipole. MNRAS 141: 445–458. ADSCrossRefGoogle Scholar
  222. 222.
    Rugh, S.E., Zinkernagel, H. and T.Y. Cao. 1999. The Casimir effect and the interpretation of the vacuum. Stud. Hist. Phil. Mod. Phys. 30(1): 111–139. MathSciNetzbMATHCrossRefGoogle Scholar
  223. 223.
    Rugh, S.E. and H. Zinkernagel. 2002. The quantum vacuum and the cosmological constant problem. Stud. Hist. Phil. Mod. Phys. 33(4): 663–705. MathSciNetzbMATHCrossRefGoogle Scholar
  224. 224.
    Sakstein, J. and J. Bhuvnesh. 2017. Implications of the neutron star merger GW170817 for cosmological scalar-tensor theories. ArXiv preprint 1710.05893.
  225. 225.
    Sandage, A.R. 1958. Current problems in the extragalactic distance scale. Astrophys. J. 127: 513–526. ADSCrossRefGoogle Scholar
  226. 226.
    Sandage, A.R. 1961. The ability of the 200-inch telescope to discriminate between selected world models. Astrophys. J. 133: 355–389. ADSMathSciNetCrossRefGoogle Scholar
  227. 227.
    Sandage, A.R. 1962. The change of redshift and apparent luminosity of galaxies due to the deceleration of selected expanding universes. Astrophys. J. 136: 319–333. ADSCrossRefGoogle Scholar
  228. 228.
    Sandage, A.R. 1965. The existence of a major new constituent of the universe: the quasistellar galaxies. Astrophys. J. 141: 1560–1578. ADSCrossRefGoogle Scholar
  229. 229.
    Sandage, A.R. 1970. Cosmology: a search for two numbers. Phys. Today 23(2): 34–42. CrossRefGoogle Scholar
  230. 230.
    Sandage, A.R. 1995. Practical cosmology: inventing the past. In The Deep Universe (Eds Sandage et al.) Springer, Berlin. pp 1–232. Google Scholar
  231. 231.
    Sandage, A.R. and G.A. Tammann. 1984. The dynamical parameters of the universe. In Proceedings of the 1983 ESO/CERN Symposium (Eds G. Setti and L. Van Hove): 127–147. Google Scholar
  232. 232.
    Schmidt, M. 1963. 3C 273: A star-like object with large red-shift. Nature 197 (4872): 1040–1050. ADSCrossRefGoogle Scholar
  233. 233.
    Schmidt, M. 1965. Large redshifts of five quasi-stellar sources. Astrophys. J. 141: 1295–1300. ADSCrossRefGoogle Scholar
  234. 234.
    Schmidt, M. and T.A. Matthews. 1964. Redshift of the quasi-stellar radio sources 3C 47 and 3C 147. Astrophys. J. 139: 781–785. ADSCrossRefGoogle Scholar
  235. 235.
    Schmidt, B.G. et al. 1998. The high-z supernova search: measuring cosmic deacceleration and global curvature of the universe using type 1a supernovae. Astrophys. J. 507: 46–63. ADSCrossRefGoogle Scholar
  236. 236.
    Schrödinger, E. 1918. Über ein Lösungssystem der allgemein kovarianten Gravitationsgleichungen. Phys. Zeit. 19: 20–22. Transl. excerpts in (Harvey 2012b). zbMATHGoogle Scholar
  237. 237.
    Schulmann, R., Kox, A.J., Janssen, M. and J. Illy. 1998. The Einstein-deSitter-Weyl-Klein debate. In CPAE 8A p351. Google Scholar
  238. 238.
    Seeliger, H. von. 1895. Über das Newton’sche Gravitationsgesetz. Astron. Nach. 137: 129–136. ADSzbMATHCrossRefGoogle Scholar
  239. 239.
    Seeliger, H. von. 1896. Über das Newton’sche Gravitationsgesetz. Sitz. König. Bayer. Akad. Wiss. 126: 373–400. zbMATHGoogle Scholar
  240. 240.
    Seeliger, H. von. 1898a. On Newton’s law of gravitation. Pop. Astron. 5: 474–478. ADSGoogle Scholar
  241. 241.
    Seeliger, H. von. 1898b. On Newton’s law of gravitation. Pop. Astron. 5: 544–551. ADSGoogle Scholar
  242. 242.
    Seitter, W.C. and R. Duemmler. 1989. The cosmological constant – historical annotations. In Morphological Cosmology; Proceedings of the Eleventh Krakow Cosmological School (Eds P. Flin and H. Duerbeck), Springer, Berlin. pp 377–387. Google Scholar
  243. 243.
    Shapiro, C. and M.S. Turner. 2006. What do we really know about cosmic acceleration? Astrophys. J. 649(2): 563–569. ADSCrossRefGoogle Scholar
  244. 244.
    Shklovsky, J. 1967. On the nature of “standard” absorption spectrum of the quasi-stellar objects. Astrophys. J. 150: L1–L3. ADSCrossRefGoogle Scholar
  245. 245.
    Slipher, V.M. 1915. Spectrographic observations of nebulae. Pop. Ast. 23: 21–24. ADSGoogle Scholar
  246. 246.
    Slipher, V.M. 1917. Nebulae. Proc. Am. Phil. Soc. 56: 403–409. ADSGoogle Scholar
  247. 247.
    Smeenk, C. 2005. False vacuum: early universe cosmology and the development of inflation. In The Universe of General Relativity: Einstein Studies Vol. 11. (Eds A.J. Kox and J. Eisenstaedt) Birkhäuser, Boston. pp 223–258. Google Scholar
  248. 248.
    Smeenk, C. 2013. Philosophy of Cosmology. In The Oxford Handbook of Philosophy of Physics. (Ed. R. Batterman), Oxford University Press, Oxford. Google Scholar
  249. 249.
    Smeenk, C. 2014. Einstein’s role in the creation of relativistic cosmology. In The Cambridge Companion to Einstein. (Eds M. Janssen and C. Lehner). Cambridge University Press, Cambridge. pp 228–269. Google Scholar
  250. 250.
    Smith, R. 1982. The Expanding Universe: Astronomy’s Great Debate 1900–1931. Cambridge University Press, Cambridge. Google Scholar
  251. 251.
    Smoot, G. et al. 1992. Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. 396(1): L1–L5. ADSCrossRefGoogle Scholar
  252. 252.
    Sparnaay, M.J. 1957. Attractive forces between flat plates. Nature 180(4581): 334–344. ADSCrossRefGoogle Scholar
  253. 253.
    Spergel, D.N. et al. (2003). First-year Wilkinson Microwave Anisotropy Probe (WMAP)observations: determination of cosmological parameters. Astrophys. J. Suppl. 148(1): 175–194. ADSCrossRefGoogle Scholar
  254. 254.
    Starobinsky, A.A. 1982. Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 117: 175–178. ADSCrossRefGoogle Scholar
  255. 255.
    Steinhardt, P.J. 1997. Cosmological challenges for the 21st century. In Critical Problems in Physics: Proceedings of a Conference Celebrating the 250th Anniversary of Princeton University (Eds V.L. Fitch et al.) Princeton University Press, Princeton, p.123. Google Scholar
  256. 256.
    Steinhardt, P.J. 2003. A quintessential introduction to dark energy. R. Soc. Lond. Trans. A361(1812): 2497–2513. ADSzbMATHCrossRefGoogle Scholar
  257. 257.
    Steinhardt, P.J. and N. Turok. 2002. A cyclic model of the universe. Science 296(5572): 1436–1439. ADSMathSciNetzbMATHCrossRefGoogle Scholar
  258. 258.
    Steinhardt, P.J. and N. Turok. 2003. The cyclic universe: an informal introduction. Nucl. Phys. B Proc. Suppl. 124: 38–49. ADSzbMATHCrossRefGoogle Scholar
  259. 259.
    Steinhardt, P.J. and N. Turok. 2006. Why the cosmological constant is small and positive. Science 312(5777): 1180–1183. ADSMathSciNetzbMATHCrossRefGoogle Scholar
  260. 260.
    Straumann, N. 1999. The mystery of the cosmic vacuum energy density and the accelerated expansion of the Universe. Eur. J. Phys. 20(6): 419–427. CrossRefGoogle Scholar
  261. 261.
    Straumann, N. 2002. The history of the cosmological constant problem. In On the Nature of Dark Energy: Proceedings of the 18th IAP Astrophysics Colloquium. (Ed. P. Brax et al.) Frontier Group (Paris). ArXiv preprint 0208027.
  262. 262.
    Straumann, N. 2013. General Relativity. Springer, Berlin (2nd ed.) Google Scholar
  263. 263.
    Tammann, G.A. 1979. Precise determination of the distances of galaxies. IAU Coll. 54: 263–293. ADSGoogle Scholar
  264. 264.
    Tammann, G.A., Sandage, A.R. and A. Yahil. 1979. The determination of cosmological parameters. In Lecture Notes for the 1979 Les Houches Summer School, Basel, Switzerland. Google Scholar
  265. 265.
    Taylor, E.F.and J.A. Wheeler. 2000. Exploring Black Holes: Introduction to General Relativity. Addison Wesley, San Francisco. Google Scholar
  266. 266.
    Tinsley, B.M. 1975. The evolution of galaxies and its significance for cosmology. Ann. NY Acad.Sci. 262: 436–448. ADSCrossRefGoogle Scholar
  267. 267.
    Tinsley, B.M. 1978. Accelerating universe revisited. Nature 273: 208–211. ADSCrossRefGoogle Scholar
  268. 268.
    Tolman, R. 1929. On the astronomical implications of the de Sitter line element for the universe. PNAS 69: 245–274. Google Scholar
  269. 269.
    Tolman, R.C. 1930. More complete discussion of the time-dependence of the non-static line element for the universe. PNAS 16: 409–420. ADSzbMATHCrossRefGoogle Scholar
  270. 270.
    Tolman, R.C. 1931a. On the theoretical requirements for a periodic behaviour of the universe. Phys. Rev. 38: 1758–1771. ADSzbMATHCrossRefGoogle Scholar
  271. 271.
    Tolman, R.C. 1931b. Letter to Albert Einstein. September 14th. Albert Einstein Archive. 23–31. Google Scholar
  272. 272.
    Tolman, R.C. 1932. Models of the Physical Universe. Science 75(1945): 367–373. ADSzbMATHCrossRefGoogle Scholar
  273. 273.
    Tolman, R.C. 1934. Relativity, Thermodynamics and Cosmology. Oxford University Press, Oxford. Google Scholar
  274. 274.
    Tolman, R.C. and M. Ward. 1932. On the behaviour of non-static models of the universe when the cosmological term is omitted. Phys. Rev. 39: 835–843. ADSzbMATHCrossRefGoogle Scholar
  275. 275.
    Topper, D.R. 2013. How Einstein Created Relativity out of Physics and Astronomy. Springer, New York. Google Scholar
  276. 276.
    Turner, M.S. 1997. The Case for Λ CDM. ArXiv preprint 9703161.
  277. 277.
    Turner, M.S. 1999a. Cosmology solved? Maybe. Nuc. Phys. B Proc. Suppl. 72(1–3): 69–80. ADSCrossRefGoogle Scholar
  278. 278.
    Turner, M.S. 1999b. Dark Matter and dark energy in the Universe. In The Third Stromlo Symposium: The Galactic Halo (Eds. B.K. Gibson et al.) ASP Conf. Ser. 165: 431–435. ADSGoogle Scholar
  279. 279.
    Turner, M.S. and D. Huterer. 2007. Cosmic acceleration, dark energy, and fundamental physics. J. Phys. Soc. Jap. 76(11): 10151–10159. CrossRefGoogle Scholar
  280. 280.
    Turner, M.S. and M. White. 1997. CDM models with a smooth component. Phys. Rev. D 56(8): 4439–4443. ADSCrossRefGoogle Scholar
  281. 281.
    Turner, M.S., Steigman, G. and L.M. Krauss. 1984. Flatness of the universe: reconciling theoretical prejudices with observational data. Phys. Rev. Lett. 52(23):2090–2093. ADSCrossRefGoogle Scholar
  282. 282.
    Veltman, M., 1975. Cosmology and the Higgs mass. Phys. Rev. Lett. 34(12): 777–779. ADSCrossRefGoogle Scholar
  283. 283.
    Vilenkin, A. 1983. Birth of inflationary universes. Phys. Rev. D 27(12): 2848–2855. ADSMathSciNetCrossRefGoogle Scholar
  284. 284.
    Vilenkin, A. 1995. Predictions from quantum cosmology. Phys. Rev. Lett. 74(6): 846–849. ADSMathSciNetCrossRefGoogle Scholar
  285. 285.
    Walker, A.G. 1937. On Milne’s world structure. Proc. Lond. Math. Soc. S242(1): 90–12. MathSciNetzbMATHCrossRefGoogle Scholar
  286. 286.
    Weinberg, S. 1972. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley and Sons, New York. Google Scholar
  287. 287.
    Weinberg, S. 1987. Anthropic bound on the cosmological constant. Phys. Rev. Lett. 59(22): 2607–2610. ADSCrossRefGoogle Scholar
  288. 288.
    Weinberg, S. 1989. The cosmological constant problem. Rev. Mod. Phys. 61(1): 1–23. ADSMathSciNetzbMATHCrossRefGoogle Scholar
  289. 289.
    Weyl, H. 1918. Gravitation und Elektrizität. Sitz. König. Preuss. Akad.: 465–478. Google Scholar
  290. 290.
    Wright, et al. 1992. Interpretation of the cosmic microwave background radiation anisotropy detected by the COBE Differential Microwave Radiometer. Astrophys. J. 396(1): L13–L18. ADSCrossRefGoogle Scholar
  291. 291.
    Zaycoff, R. 1932. Zur relativistichen Kosmogonie. Zeit. Astrophys. 6: 128–197. ADSzbMATHGoogle Scholar
  292. 292.
    Zel’dovich, Y.B. 1967. Cosmological constant and elementary particles. JETP Lett. 6: 316–317. ADSGoogle Scholar
  293. 293.
    Zel’dovich, Y.B. 1968. The cosmological constant and the theory of elementary particles. Sov. Phys. Usp. 11: 381–393. Republished with editorial notes in Gen. Rel. Grav. 40: 1557–1591 (2008). ADSCrossRefGoogle Scholar
  294. 294.
    Zumino, B. 1975. Supersymmetry and the vacuum. Nucl. Phys. B 89(3): 535–546. ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Cormac O’Raifeartaigh
    • 1
    Email author
  • Michael O’Keeffe
    • 1
  • Werner Nahm
    • 2
  • Simon Mitton
    • 3
  1. 1.School of Science and Computing, Waterford Institute of TechnologyWaterfordIreland
  2. 2.School of Theoretical Physics, Dublin Institute for Advanced StudiesDublin 2Ireland
  3. 3.St Edmund’s College, University of CambridgeCambridgeUK

Personalised recommendations