The European Physical Journal H

, Volume 43, Issue 1, pp 43–72 | Cite as

The evolution of modern cosmology as seen through a personal walk across six decades

  • Jayant V. NarlikarEmail author
Personal Recollection


This highly personal account of evolution of cosmology spans a period of approximately six decades 1959–2017. It begins when in 1959 the author, as an undergraduate at Cambridge, was attracted to the subject by the thought provoking lectures by Fred Hoyle as well as by his popular books The Nature of Universe and The Frontiers of Astronomy. The result was that after a successful performance at the Mathematical Tripos (Part III) examination, he enrolled as a research student of Hoyle. In this article the author describes the interesting works in cosmology that kept him busy both in Cambridge and in India. The issues pertinent to cosmological research in the 1960s and 1970s included the Mach’s principle, the Wheeler-Feynman theory relating the local electromagnetic arrow of time to the cosmological one, the observational tests of specific expanding universe models, and issues like singularity in quantum cosmology. However, post-1965, the nature of cosmological research changed dramatically with the discovery of the cosmic microwave background radiation (CMBR). Given the assumption that the CMBR is a relic of big bang there has been a host of papers on the early universe, going as close to the big bang as the very early universe would permit: around just 10−36 s. The author argues that despite the popularity of the standard hot big bang cosmology (SBBC) it rests on rather shaky foundations. On the theoretical side there is no well established physical framework to support the SBBC; nor is there independent observational support for its assumptions like the nonbaryonic dark matter, inflation and dark energy. While technological progress has made it possible to explore the universe in greater detail with open mind, today’s cosmologists seem caught in a range of speculations in support of the big bang dogma. Thus, in modern times cosmology appears to have lost the Camelot spirit encouraging adventurous studies of the unknown. A spirit of openness is advocated to restore cosmology to its rightful position as the flagship of astronomy.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aarseth, S., 1985, Direct N-body calculations in IAU Symposium 113 on Dynamics of star clusters, Eds. J. Goodman and P. Hut, Reidel, 251–259 Google Scholar
  2. 2.
    Alpher, R. and Herman, R., 1948, Evolution of the universe, Nature, 162, 774–775 ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Arp, C. (H.C.), 1987, Quasars, Redshifts and Controversy, Berkeley: Interstellar Media Google Scholar
  4. 4.
    Assis, A.K.T. and Neves, M.C.D., 1995, History of the 2.7 K temperature prior to Penzias and Wilson, Apeiron, 2, 79–84 Google Scholar
  5. 5.
    Barrow, J. and Stein-Schabes, J., 1986, Inhomogeneous cosmologies with cosmological constant, Phys. Lett., 103A, 316–317 MathSciNetGoogle Scholar
  6. 6.
    Born, M., 1965, Cosmology chapter in Einstein’s Theory of Relativity, Dover, N.Y., p. 369 Google Scholar
  7. 7.
    Brans, K. and Dicke, R., 1961, Mach’s principle and a relativistic theory of gravitation, 124, 925–935 Google Scholar
  8. 8.
    Burbidge, M., Burbidge, G., Fowler, W. and Hoyle, F., 2016 Synthesis of the Elements in the stars, Rev. Mod. Phys., 29, 547–650 ADSCrossRefGoogle Scholar
  9. 9.
    DeWitt, B. and Brehme, R.W., 1960, Radiation damping in a gravitational field, Ann. Phys. New York, 9, 220–259 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dicke, R., 1962, Mach’s principle and invariance under transformation of units, Phys. Rev., 125, 2163–2167 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dirac, P., 1938, Classical theory of radiating electrons, Proc. R. Soc., A167, 148–169 ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Dirac, P., 1969 in Fundamental Interactions at High Energy, Eds. T. Gidehus, G. Kaiser and A. Perlmutter, Gordon and Breech, New York Google Scholar
  13. 13.
    Dirac, P., 1978 in Directions in Physics, Lectures delivered in Australia and New Zealand in 1975, Eds. H. Hora and J.R. Shepanski, Wiley, Interscience, p. 36 Google Scholar
  14. 14.
    Einstein, A., 1917, Cosmological considerations in the general theory of relativity, Preuss. Akad. Wiss. Berlin, Sitzber, 142–152 Google Scholar
  15. 15.
    Fokker, A.D., 1929, Ein invarianterVariationssatz für die Bewegung mehrerer elektrischer Massenteilchen, Z. Phys., 58, 386–393 ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Fokker, A.D., 1929, Physica, 9, 33 Google Scholar
  17. 17.
    Fokker, A.D., 1932, Physica, 12, 145 Google Scholar
  18. 18.
    Gamow, G., 1946, Expanding universe and the origin of elements, Phys. Rev., 70, 572 ADSCrossRefGoogle Scholar
  19. 19.
    Gibbons, G., 2003, Phantom matter and the cosmological constant. arXiv:hep-th/0302199v1
  20. 20.
    Gödel, K., 1949, An example of a new type of cosmological solution of Einstein’s field equations of gravitation, Rev. Mod. Phys., 21, 447 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Gold, T. and Hoyle, F., 1958, Cosmic rays and radio waves as manifestations of a hot universe. Paris Symposium on Radio Astronomy, Ed. R.N. Bracewell, Stanford University Press, Palo Alto, 583–588 Google Scholar
  22. 22.
    Guth, A., 1981, Inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev., D23, 347–356 ADSzbMATHGoogle Scholar
  23. 23.
    Hawking, S.W. and Ellis, G.F.R., 1974, Large Scale Structure of Spacetime, Cambridge Google Scholar
  24. 24.
    Hecht, L., 1996, The significance of the 1845 Gauss-Weber correspondence, The 21st Century, Fall issue, 22–43 Google Scholar
  25. 25.
    Heckmann, O., and Schücking E., 1958, World models, Proceedings of the Solvay Conference, Brussels Stoops, 1–10 Google Scholar
  26. 26.
    Hogarth, J., 1962, Cosmological considerations of the absorber theory of radiation, Proc. R. Soc., A267, 365–383 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hoyle, F., 1950, The Nature of the Universe, Basil Blakwell, London Google Scholar
  28. 28.
    Hoyle, F., 1959, The Frontiers of Astronomy, William Heinamann, London Google Scholar
  29. 29.
    Hoyle, F., 1965, Recent developments in cosmology, Nature, 208, 111–114 ADSCrossRefGoogle Scholar
  30. 30.
    Hoyle, F., 1970, in Study week on Nuclei of galaxies, Ed. O’Connell, North Holland, Amsterdam Google Scholar
  31. 31.
    Hoyle, F. and Narlikar, J., 1962a, On the counting of radio sources in steady state cosmology, M.N.R.A.S., 123, 133–166 ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    Hoyle, F. and Narlikar, J., 1962b, On the counting of radio sources in steady state cosmology II, M.N.R.A.S., 125, 13–20 ADSCrossRefzbMATHGoogle Scholar
  33. 33.
    Hoyle, F. and Narlikar, J. 1963a, Mach’s principle and the creation of matter, Proc. R. Soc., A273, 1–11 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Hoyle, F. and Narlikar, J., 1963b, Time symmetric electrodynamics and the arrow of time in cosmology, Proc. R. Soc., A277, 1 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Hoyle, F. and Narlikar, J., 1964a, C-field as a direct particle field, Proc. R. Soc., A282, 178–183 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Hoyle, F. and Narlikar, J., 1964b, Gravitational influence of direct particle fields, Proc. R. Soc., A282, 184–190 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Hoyle, F. and Narlikar, J., 1964c, A new theory of gravitation, Proc. R. Soc., A282, 191–207 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Hoyle, F. and Narlikar, J., 1966, A radical departure from the steady state concept in cosmology, Proc. R. Soc., A290, 162–176 ADSCrossRefGoogle Scholar
  39. 39.
    Hoyle, F. and Narlikar, J., 1969, The quantum mechanical response of the universe, Ann. Phys. (N.Y.), 54, 207–239 ADSCrossRefzbMATHGoogle Scholar
  40. 40.
    Hoyle, F. and Narlikar, J., 1971, Relativistic treatment of radiative processes, Ann. Phys.(N.Y.), 62, 44–96 ADSCrossRefGoogle Scholar
  41. 41.
    Hoyle, F. and Narlikar, J., 1993, On the removal of divergences in quantum electrodynamics: a global point of view, Proc. R. Soc., A442, 469–484ADSCrossRefGoogle Scholar
  42. 42.
    Hoyle, F. and Narlikar, J., 1995, Cosmology and action at a distance electrodynamics, Rev. Mod. Phys., 61, 113–156 ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Hoyle, F. and Tayler, R., 1964, The mystery of cosmic helium abundance, Nature, 203, 1108–1110 ADSCrossRefGoogle Scholar
  44. 44.
    Hoyle, F., Bondi, H. and Gold, T., 1955, Black giant stars, Observatory Mag., 75, 80–81 ADSGoogle Scholar
  45. 45.
    Hoyle, Fred, Burbidge, G., Arp, C. (H.C.), Narlikar, Jayant and Wickramasinghe, Chandra, 1990, The extragalactic universe, an alternative view, Nature, 346, 807–812 Google Scholar
  46. 46.
    Hoyle, F., Burbidge, G. and Narlikar, J., 1993, A quasi-steadystate model with creation of matter, Ap. J., 410, 437–457 ADSCrossRefGoogle Scholar
  47. 47.
    Hoyle, F., Burbidge, G. and Narlikar, J., 2000, A Different Approach to Cosmology, Cambridge University Press Google Scholar
  48. 48.
    Kazanas, D., 1980, Dynamics of the universe and spontaneous symmetry breaking, Ap. J. Letters, 241, L59–L63 ADSCrossRefGoogle Scholar
  49. 49.
    Linde, A., 1982, A new inflationary universe scenario, Phys. Lett., B108, 389–393 ADSCrossRefGoogle Scholar
  50. 50.
    Maddox, J., 1994, News and Views, Nature, 371, 11 ADSCrossRefGoogle Scholar
  51. 51.
    Mather, J.C. et al., 1990, A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite, Ap. J. Letters, 354, L37–L40 ADSCrossRefGoogle Scholar
  52. 52.
    McKellar, A., 1941, Publ. Dom. Ast. Obs., 7, 251 ADSGoogle Scholar
  53. 53.
    Mitton, S., 2011, Fred Hoyle: A Life in Science, Cambridge University Press Google Scholar
  54. 54.
    Narlikar, J., 1963, Neutrinos and the arrow of time in cosmology, Proc. R. Soc., A270, 553–561 ADSMathSciNetzbMATHGoogle Scholar
  55. 55.
    Narlikar, J., 1968, On the general correspondence between field theories and the theories of direct interparticle action, Proc. Camb. Phil. Soc., 64, 1071–1079 ADSCrossRefzbMATHGoogle Scholar
  56. 56.
    Narlikar, J., 1984, The vanishing likelihood of spacetime singularity in quantum conformal cosmology, Found. Phys., 14, 443–456 ADSCrossRefGoogle Scholar
  57. 57.
    Narlikar, J., 2002, An Introduction to Cosmology 2nd Edition, Cambridge University Press Google Scholar
  58. 58.
    Narlikar, J., 2015, Trials and tribulations of playing the devil’s advocate, Res. Astron. Astrophys., 15, 1–14 ADSCrossRefGoogle Scholar
  59. 59.
    Narlikar, J., 2016, My Tale of Four Cities, autobiography published by National Book Trust, India Google Scholar
  60. 60.
    Narlikar, J. and Kembhavi, A., 1980, Nonstandard cosmologies, Fund. Cos. Phys., 6, 1–186 ADSGoogle Scholar
  61. 61.
    Narlikar, J., Edmunds, M. and Wickramasinghe, C., 1976, Limits on a microwave background without the big bang, Far Infrared Astronomy, Ed. M. Rowan Robinson, Pergamon, 131–142 Google Scholar
  62. 62.
    Narlikar, J., Vishwakarma, R.G. and Burbidge, G., 2002, Interpretations of the accelerating universe, Publ. Astron. Soc. of Pacific, 114, 1092–1096 ADSCrossRefGoogle Scholar
  63. 63.
    Padmanabhan, T. and Vasanti, M.M., 1982, Can the curvature effects be neglected in the early universe? Phys. Lett., 89A, 327–328 ADSCrossRefGoogle Scholar
  64. 64.
    Peebles, P.J.E., Schramm, D., Turner, E.L. and Kron, R.G., 1991, The case for the relativistic hot big bang cosmology, Nature, 352, 769–776 ADSCrossRefGoogle Scholar
  65. 65.
    Penzias, A. and Wilson, R., 1965, Measurement of excess antenna temperature at 4080 Mc/s., Ap. J., 142, 419–421 ADSCrossRefGoogle Scholar
  66. 66.
    Perlmutter, S. et al., 1999, Measurements of Ω and Λ from 42 high redshift supernovae, Ap. J. Letters, 517, L565–L586 CrossRefGoogle Scholar
  67. 67.
    Pryce, M., 1961, preprint: Private communication Google Scholar
  68. 68.
    Raychaudhuri, Amal K., 1955, Relativistic cosmology I, Phys. Rev., 98, 1123–1126 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Roll, P.G. and Wilkinson, D.T., 1966, Phys. Rev. Lett., 16, 405 ADSCrossRefGoogle Scholar
  70. 70.
    Sato, K., 1981, First order phase transition of a vacuum and the expansion of the universe, M.N.R.A.S., 195, 467–479 ADSCrossRefGoogle Scholar
  71. 71.
    Schwarzschild, K., 1903, Zur Elektrodynamik II, Gott. Nach., 128, 132–141 zbMATHGoogle Scholar
  72. 72.
    Singh, P., Sami, M. and Dadhich, N.K., 2003, Cosmological dynamics of a phantom field, Phys. Rev., D29, 023522 ADSGoogle Scholar
  73. 73.
    Singh, S., 2004, Big Bang, Fourth Estate Google Scholar
  74. 74.
    Tetrode, H., 1922, Über den Wirkungszusammenhang der Welt. Eine Erweiterung der klassischen Dynamik, Z. Phys., 10, 317–328 ADSCrossRefGoogle Scholar
  75. 75.
    Wheeler, J. and Feynman, R., 1945, Interaction with the absorber as the mechanism of radiation, Rev. Mod. Phys., 17, 157–181 ADSCrossRefGoogle Scholar
  76. 76.
    Wheeler, J. and Feynman, R., 1949, Classical electrodynamics in terms of direct interparticle action, Rev. Mod. Phys., 21, 425–433 ADSCrossRefzbMATHGoogle Scholar
  77. 77.
    Zel’dovich, Ya.B. and Shandarin, S.F., 1989, The large-scale structure of the universe, Rev. Mod. Phys., 61, 185–220 CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Inter-University Centre for Astronomy and AstrophysicsPuneIndia

Personalised recommendations