The European Physical Journal H

, Volume 42, Issue 4–5, pp 611–661 | Cite as

The Charm of Theoretical Physics (1958–1993)

  • Luciano Maiani
  • Luisa Bonolis
Open Access
Oral history interview


Personal recollections on theoretical particle physics in the years when the Standard Theory was formed. In the background, the remarkable development of Italian theoretical physics in the second part of the last century, with great personalities like Bruno Touschek, Raoul Gatto, Nicola Cabibbo and their schools.


  1. 1.
    Abachi, S. et al. (D0 Collaboration). 1995. Observation of the Top Quark. Physical Review Letters 74: 2632–2637 ADSCrossRefGoogle Scholar
  2. 2.
    Abe, F. et al. (CDF Collaboration). 1995. Observation of Top Quark Production in pp Collisions with the Collider Detector at Fermilab. Physical Review Letters 74: 2626–2631 ADSCrossRefGoogle Scholar
  3. 3.
    Abetti, G. 1952. Il Sole. Hoepli, Turin, 2nd edition Google Scholar
  4. 4.
    Ademollo, M., R. Gatto. 1964. Nonrenormalization Theorem for the Strangeness Violating Vector Currents. Physical Review Letters 13: 264–265 ADSCrossRefGoogle Scholar
  5. 5.
    Akulov, P., D. V. Volkov. 1974. Goldstone Fields with Spin 1/2. Theoretical and Mathematical Physics 18: 28–35 ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Altarelli, G., N. Cabibbo, L. Maiani. 1971. The Sigma Term and Low-Energy π-N Scattering. Nuclear Physics B 34: 621–631 ADSCrossRefGoogle Scholar
  7. 7.
    Altarelli, G., N. Cabibbo, L. Maiani. 1972. The Drell-Hearn Sum Rule and the Lepton Magnetic Moment in the Weinberg Model of Weak and Electromagnetic Interactions. Physics Letters B 40: 415–419 ADSCrossRefGoogle Scholar
  8. 8.
    Altarelli, G., L. Maiani. 1974. Octet Enhancement of Non-Leptonic Weak Interactions in Asymptotically Free Gauge Theories. Physics Letters B 52: 351–354 ADSCrossRefGoogle Scholar
  9. 9.
    Altarelli, G., N. Cabibbo, R. Petronzio, L. Maiani, G. Parisi. 1974a. Is the 3104-MeV Vector Meson the ψc or the W0 ? Lettere al Nuovo Cimento 11: 609–612 CrossRefGoogle Scholar
  10. 10.
    Altarelli, G., N. Cabibbo, L. Maiani, R. Petronzio. 1974b. The nucleon as a Bound State of Three Quarks and Deep Inelastic Phenomena. Nuclear Physics B 69: 531–556 ADSCrossRefGoogle Scholar
  11. 11.
    Altarelli, G., R. K. Ellis, L. Maiani, R. Petronzio. 1975. The Structure of Parity Violating Strangeness Conserving Weak Non-Leptonic Amplitudes in an Asymptotically Free Theory. Nuclear Physics B 88: 215–236 ADSCrossRefGoogle Scholar
  12. 12.
    Altarelli, G., G. Parisi. 1977. Asymptotic Freedom in Parton Language. Nuclear Physics B 126: 298–318 ADSCrossRefGoogle Scholar
  13. 13.
    Altarelli, G., L. Baulieu, N. Cabibbo, L. Maiani, R. Petronzio. 1977a. Muon Number Non-Conserving Processes in Gauge Theories of Weak Interactions. Nuclear Physics B 125: 285–302 ADSCrossRefGoogle Scholar
  14. 14.
    Altarelli, G., N. Cabibbo, L. Maiani, R. Petronzio. 1977b. Must the New Heavy Lepton Have Its Own Neutrino ? Physical Letters B 67: 463–436 ADSCrossRefGoogle Scholar
  15. 15.
    Altarelli, G., N. Cabibbo, G. Corbò, L. Maiani, G. Martinelli. 1982. Leptonic Decay of Heavy Flavors: A Theoretical Update. Nuclear Physics B 208: 365–380 ADSCrossRefGoogle Scholar
  16. 16.
    Amaldi, E., The Bruno Touschek Legacy, CERN 81-19.
  17. 17.
    Amaldi, U., A. Bohm, L. S. Durkin, P. Langacker, A. K. Mann, W. J. Marciano, A. Sirlin, H. H. Williams. 1987. A Comprehensive Analysis of Data Pertaining to the Weak Neutral Current and the Intermediate Vector Boson Masses. Physical Review D 36: 1385–1407 ADSCrossRefGoogle Scholar
  18. 18.
    Antonelli, F., M. Consoli, G. Corbò. 1980. One Loop Correction to Vector Boson Masses in the Glashow-Weinberg-Salam Model of Electromagnetic and Weak Interactions. Physics Letters B 91: 90–94 ADSCrossRefGoogle Scholar
  19. 19.
    Antonelli, F., L. Maiani. 1981. electromagnetic Corrections to Neutrino Processes in the Leading Logarithmic Approximation: The Value of sin 2θ and the W and Z Masses. Nuclear Physics B 186: 269–286 ADSCrossRefGoogle Scholar
  20. 20.
    Antonelli, F., M. Consoli, G. Corbò. 1981a. The Leptonic Width of the Neutral Vector Boson. Physics Letters B 99: 475–480 ADSCrossRefGoogle Scholar
  21. 21.
    Antonelli, F., M. Consoli, G. Corbò, O. Pellegrino. 1981b. The Masses of the Intermediate Vector Bosons. Nuclear Physics B 183: 195–222 ADSCrossRefGoogle Scholar
  22. 22.
    Appelquist, T., H. D. Politzer. 1975. Orthocharmonium and e+ e- Annihilation. Physical Review Letters 34: 43–45 ADSCrossRefGoogle Scholar
  23. 23.
    Appelquist, T., A. De Rújula, H. D. Politzer, S. L. Glashow. 1975. Charmonium Spectroscopy. Physical Review Letters 34: 365–369 ADSCrossRefGoogle Scholar
  24. 24.
    Aubert, J. J. et al. (E598 Collaboration). 1974. Experimental Observation of a Heavy Particle. J. Physical Review Letters 33: 1404–1406 ADSCrossRefGoogle Scholar
  25. 25.
    Augustin, J. E. et al. (SLAC-SP-017 Collaboration). 1974. Discovery of a Narrow Resonance in e+ e- Annihilation. Physical Review Letters 33: 1406–1408 ADSCrossRefGoogle Scholar
  26. 26.
    Bacci, C. et al. 1972. Multihadronic Cross Sections from e+ e- Annihilation at C.M. Energies between 1.4 and 2.4 GeV. Physics Letters B 38: 551–554 ADSCrossRefGoogle Scholar
  27. 27.
    Bacci, C. et al. 1973. Multihadronic Cross Sections from e+ e- Annihilation up to 3 GeV c.m. Energy. Physics Letters B 44: 533–536 ADSCrossRefGoogle Scholar
  28. 28.
    Bacci, C. et al. 1974. Preliminary Result of Frascati (ADONE) on the Nature of a New 3.1-GeV Particle Produced in e+ e- Annihilation. Physical Review Letters 33: 1408–1410. Erratum-ibid. 33: 1649 ADSCrossRefGoogle Scholar
  29. 29.
    Barbieri, R., L. Maiani. 1982. The Muon Anomalous Magnetic Moment in Broken Supersymmetric Theories, Physics Letters B 117: 203–207 ADSCrossRefGoogle Scholar
  30. 30.
    Barbieri, R., L. Maiani. 1983a. Renormalization of the Electroweak ρ Parameter from Supersymmetric Particles. Nuclear Physics B 224: 32–42 ADSCrossRefGoogle Scholar
  31. 31.
    Barbieri, R., Cabibbo, N., Maiani, L., S. Petrarca. 1983. Supersymmetric Decay Modes of the W and Single Electron Production in pp Collisions, Physics Letters B 127: 458–462 ADSCrossRefGoogle Scholar
  32. 32.
    Barnes, V. E. et al. 1964. Observation of a Hyperon with Strangeness Minus Three. Physical Review Letters 12: 204–207 ADSCrossRefGoogle Scholar
  33. 33.
    Bars, I., M.Yoshimura. 1972. Muon Magnetic Moment in a Finite Theory of Weak and Electromagnetic Interaction. Physical Review D 6: 374–376 ADSCrossRefGoogle Scholar
  34. 34.
    Bellazzini, B., C. Csáki, J. Serra. 2014. Composite Higgses, European Physical Journal C 74: 2766 ADSCrossRefGoogle Scholar
  35. 35.
    Bernardini, C. 2004. AdA: the First Electron-Positron Collider. Physics in Perspective 6: 156–183 ADSCrossRefGoogle Scholar
  36. 36.
    Bjorken, B. J., S. L. Glashow. 1964. Elementary Particles and SU(4). Physics Letters 11: 255–257 ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Blietschau, J., et al. (Aachen-Bonn-CERN-Munich-Oxford Collaboration). 1979. Production of Charmed Mesons in Neutrino Interactions in Hydrogen. Physics Letters B 86: 108–114 ADSCrossRefGoogle Scholar
  38. 38.
    Bochicchio, M., L. Maiani, G. Martinelli, G. C. Rossi, M. Testa. 1985. Chiral Symmetry on the Lattice with Wilson Fermions. Nuclear Physics B 262: 331–335 ADSCrossRefGoogle Scholar
  39. 39.
    Bogoliubov, N. N., D. V. Shirkov. 1959. Introduction to the Theory of Quantized Fields. Interscience, New York Google Scholar
  40. 40.
    Bonolis, B. 2005. Bruno Touschek vs. Machine Builders: AdA, the First Matter-Antimatter Collider. Rivista del Nuovo Cimento 28: 1–60 Google Scholar
  41. 41.
    Bonolis, L., G. Pancheri. 2011. Bruno Touschek: Particle Physicist and Father of the e+ e- Collider. European Physical Journal H 36: 1–61 ADSCrossRefGoogle Scholar
  42. 42.
    Bouchiat, C., J. Iliopoulos, J. Prentki. 1968. Divergences of weak nonleptonic amplitudes and the breaking of SU (3) ⊗ SU (3). Il Nuovo Cimento A 56: 1150–1154 ADSCrossRefGoogle Scholar
  43. 43.
    Bouchiat, C., J. Iliopoulos, Ph. Meyer. 1972. An anomaly-free version of Weinberg’s model. Physics Letters B 38: 519–523 ADSCrossRefGoogle Scholar
  44. 44.
    Buchmuller W., C. Ludeling. 2006. Field Theory and Standard Model. arXiv:hep-ph/0609174
  45. 45.
    Cabibbo, N. 1963. Unitary Symmetry and Leptonic Decays. Physical Review Letters 10: 531–533 ADSCrossRefGoogle Scholar
  46. 46.
    Cabibbo, N. 1978. Time Reversal Violation in Neutrino Oscillation. Physics Letters B 72: 333–335 ADSCrossRefGoogle Scholar
  47. 47.
    Cabibbo, N. 1997. e+e- Physics – a View from Frascati in 1960’s. In Valente V. (ed.). Adone a Milestone on the Particle Way. Frascati Physics Series, Frascati Google Scholar
  48. 48.
    Cabibbo, N., R. Gatto, C. Zemach. 1960. A Theorem on the Elimination of Contact Muon-Electron Interactions. Il Nuovo Cimento 16: 168–174 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Cabibbo, N., R. Gatto. 1961a. Theoretical Discussion of Possible Experiments with Electron-Positron Colliding Beams. Il Nuovo Cimento 20: 185–193 ADSCrossRefGoogle Scholar
  50. 50.
    Cabibbo, N., R. Gatto. 1961b. Electron-Positron Colliding Beam Experiments. Physical Review 124: 1577–1595 ADSCrossRefGoogle Scholar
  51. 51.
    Cabibbo,N., H. Ruegg. 1966. Saturation of Chiral U(3) × U(3) Algebra. Physics Letters 22: 85–87 ADSCrossRefGoogle Scholar
  52. 52.
    Cabibbo, N., L. Maiani, G. Preparata. 1967. Finiteness of Radiative Corrections to π - β-decay. Physics Letters B 25: 31–34 ADSCrossRefGoogle Scholar
  53. 53.
    Cabibbo, N., L. Maiani. 1968. Dynamical Interrelation of Weak, Electromagnetic and Strong Interaction and the Value of θ. Physics Letters B 28: 131–135 ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    Cabibbo, N., L. Maiani. 1970a. Origin of the Weak-Interaction Angle. II. Physical Review D 1: 707–718 ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    Cabibbo, N., L. Maiani. 1970b. Weak Interactions and the Breaking of Hadron Symmetries. In M. Conversi (ed.) Evolution of Particle Physics. A Volume Dedicated to Edoardo Amaldi on his Sixtieth Birthday. Academic Press, New York and London, pp. 50–80 Google Scholar
  56. 56.
    Cabibbo, N., G. Parisi, M. Testa. 1970. Hadron Production in e+ e- Collisions. Lettere al Nuovo Cimento 4: 35–39 CrossRefGoogle Scholar
  57. 57.
    Cabibbo, N., J. Iliopoulos, J. Leite Lopes, L. Maiani, P. Musset, C. Rubbia, R. Turlay. 1974. Particle Physics Summer School, Gif-Sur-Yvette, 2–21 September 1974. 1. Weak Interactions. INIS-IN2P3-EC-74, Paris Google Scholar
  58. 58.
    Cabibbo, N., L. Maiani. 1978. The Lifetime of Charmed Particles. Physics Letters B 79: 109–111 ADSCrossRefGoogle Scholar
  59. 59.
    Cabibbo, N., L. Maiani, G. Parisi, R. Petronzio. 1979. Bounds on the Fermions and Higgs Boson Masses in Grand Unified Theories. Nuclear Physics B 158: 295–305 ADSCrossRefGoogle Scholar
  60. 60.
    Cashmore, R., L. Maiani, J. P. Revol (eds). 2004. Prestigious Discoveries at CERN: 1973 Neutral Currents, 1983 W and Z bosons. Springer, Geneva, Switzerland, 2003 Google Scholar
  61. 61.
    CERN Courier, Anonymous. 1967. Physics School in Sicily. CERN Courier 7: 148–150 Google Scholar
  62. 62.
    Chew, G.F., S. Mandelstam. 1960. Theory of the Low-Energy Pion-Pion Interaction. Physical Review 119: 467–477 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Coleman, S., J. Mandula. 1967. All Possible Symmetries of the S Matrix. Physical Review 159: 1251–1256 ADSzbMATHCrossRefGoogle Scholar
  64. 64.
    Coleman, S. R., E. J. Weinberg. 1972. Radiative Corrections as the Origin of Spontaneous Symmetry Breaking. Physical Review D 7: 1888–1910 ADSCrossRefGoogle Scholar
  65. 65.
    Consoli, M., S. Lo Presti, L. Maiani. 1983. Higher-Order Effects and the Vector Boson Physical Parameters. Nuclear Physics B 223: 474–500 ADSCrossRefGoogle Scholar
  66. 66.
    Contino, R. 2010. The Higgs as a Composite Nambu-Goldstone Boson, arXiv:1005.4269
  67. 67.
    Costa, G., J. R. Ellis, G. L. Fogli, D. V. Nanopoulos, F. Zwirner. 1988. Neutral Currents Within and Beyond the Standard Model. Nuclear Physics B 297: 244–285 ADSCrossRefGoogle Scholar
  68. 68.
    Curci, G., E. Franco, L. Maiani, G. Martinelli. 1988. Mixing Coefficients of the Lattice Weak Hamiltonian with Dimension Five Operators. Physics Letters B 202: 363–368 ADSCrossRefGoogle Scholar
  69. 69.
    Dashen, R. 1969. Chiral SU (3) ⊗ SU (3) as a Symmetry of the Strong Interactions. Physical Review 183: 1245–1260 ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    De Franceschi, G., L. Maiani. 1965. An Introduction to Group Theory and to Unitary Symmetry Models. Fortschritte der Physik 13: 279–384 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Dimopoulos, S., H. Georgi. 1981. Softly Broken Supersymmetry and SU(5). Nuclear Physics B 193: 150–162 ADSCrossRefGoogle Scholar
  72. 72.
    Dominguez, C. A., M. Greco. 1975. Charm, Evdm and Narrow Resonances in e+ e- Annihilation. Lettere al Nuovo Cimento 12: 439–443 CrossRefGoogle Scholar
  73. 73.
    ECFA-CERN. 1984. Large Hadron Collider in the LEP Tunnel: Proceedings of the ECFA-CERN Workshop, held at Lausanne and Geneva, 21–27 March 1984, CERN, Geneva Google Scholar
  74. 74.
    Einstein, A., L. Infeld. 1938. The Evolution of Physics. The Growth of Ideas from early Concepts to Relativity and Quanta. Cambridge University Press, 1st edition Google Scholar
  75. 75.
    Ellis, J. R., M. K. Gaillard, D. V. Nanopoulos. 1976. Lefthanded Currents and CP Violation. Nuclear Physics B 109: 213–243 ADSCrossRefGoogle Scholar
  76. 76.
    Englert, F., R. Brout. 1964. Broken Symmetry and the Mass of Gauge Vector Mesons. Physical Review Letters 13: 321–323 ADSMathSciNetCrossRefGoogle Scholar
  77. 77.
    Fayet, P. 1976. Supersymmetry and Weak, Electromagnetic and Strong Interactions. Physics Letters B 64: 159–162 ADSCrossRefGoogle Scholar
  78. 78.
    Fayet, P. 2016. The Supersymmetric Standard Model, in L. Maiani, L. Rolandi (eds.) The Standard Theory of Particle Physics: Essays to Celebrate CERN’s 60th Anniversary. World Scientific, Singapore, pp. 397–454 Google Scholar
  79. 79.
    Feinberg, G., P. Kabir, S. Weinberg. 1959. Transformation of Muons into Electrons. Physical Review Letters 3: 527–530 ADSzbMATHCrossRefGoogle Scholar
  80. 80.
    Fermi, E. 1934a. Tentativo di una teoria dei raggi β (Attempt at a Theory of β-rays). Il Nuovo Cimento 11: 1–19 ADSCrossRefGoogle Scholar
  81. 81.
    Fermi, E. 1934b. Versuch einer Theorie der β-Strahlen. Zeitschrift für Physik 88: 161–177 ADSzbMATHCrossRefGoogle Scholar
  82. 82.
    Fermi, E. 1951. Elementary Particles. Yale University Press, New Haven, 1st edition Google Scholar
  83. 83.
    Fermi, E., C. N. Yang. 1949. Are Mesons Elementary Particles? Physical Review 76: 1739–1743 ADSzbMATHCrossRefGoogle Scholar
  84. 84.
    Feynman, R. P. 1961. Theory of Fundamental Processes. A.A. Benjamin, New York Google Scholar
  85. 85.
    Feynman, R. P., M. Gell-Mann. 1958. Theory of the Fermi Interaction. Physical Review 109: 193–198 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Fogli, G., D. Haidt. 1988. Structure of the Hadronic Neutral Current and Parameters of the Standard Model from an Analysis of the Neutrino Induced Deep Inelastic Scattering. Zeitschrift für Physik C 40: 379–402 ADSCrossRefGoogle Scholar
  87. 87.
    Fritzsch, H., M. Gell-Mann, H. Leutwyler. 1973. Advantages of the Color Octet Gluon Picture. Physics Letters B 47: 365–368 ADSCrossRefGoogle Scholar
  88. 88.
    Fujikawa, K., B. W. Lee, A. I. Sanda. 1972, Generalized Renormalizable Gauge Formulation of Spontaneously Broken Gauge Theories. Physical Review D 6: 2923–2943 ADSCrossRefGoogle Scholar
  89. 89.
    Gaillard, M.K., B. W., Lee. 1974. ΔI = 1 ∕ 2 Rule for Nonleptonic Decays in Asymptotically Free Field Theories. Physical Review Letters 33: 108–111 ADSCrossRefGoogle Scholar
  90. 90.
    Gaillard, M. K., B. W., Lee. 1974. Rare Decay Modes of the K-Mesons in Gauge Theories. Physical Review D 10: 897–916 ADSCrossRefGoogle Scholar
  91. 91.
    Gaillard, M. K., B. W. Lee, J. L. Rosner. 1975. Search for Charm. Reviews of Modern Physics 47: 277–310 ADSCrossRefGoogle Scholar
  92. 92.
    Gaillard, M. K., L. Maiani, R. A. Petronzio. 1982. Soft Pion Emission in pp Resonance Formation. Physics Letters B 110: 489–492 ADSCrossRefGoogle Scholar
  93. 93.
    Gatto, R., L. Maiani, G. Preparata. 1966. Relation between D ∕ F and GA ∕ GV from Current Algebra. Physical Review Letters 16: 377–379 ADSMathSciNetCrossRefGoogle Scholar
  94. 94.
    Gatto, R., L. Maiani, G. Preparata. 1967. Saturation of Current Algebra Equations with Higher Baryonic Resonances. Physics 3: 1–16 Google Scholar
  95. 95.
    Gatto, R., G. Sartori, M. Tonin. 1968. Weak Selfmasses, Cabibbo Angle, and Broken SU(2) ⊗ SU(2). Physics Letters B 28: 128–130 ADSCrossRefGoogle Scholar
  96. 96.
    Gavela, M. B., L. Maiani, S. Petrarca, G. Martinelli, O. Pène, C. T. Sachrajda. (European Lattice Collaboration, ELC). 1988. Heavy Flavour Weak Transitions on the Lattice. Physics Letters B 206: 113–119 ADSCrossRefGoogle Scholar
  97. 97.
    Gavela, M. B., L. Maiani, S. Petrarca, G. Martinelli, O. Pène, C. T. Sachrajda. (European Lattice Collaboration, ELC). 1989. Recent Results and Prospects in the Computation of Weak Amplitudes in Lattice QCD. Nuclear Physics B 7: 228–254 CrossRefGoogle Scholar
  98. 98.
    Gell-Mann,M. 1962. Symmetries of Baryons and Mesons. Physical Review 125: 1067–1084 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Gell-Mann, M. 1964. A Schematic Model of Baryons and Mesons. Physics Letters 8: 214–215 ADSCrossRefGoogle Scholar
  100. 100.
    Gell-Mann,M., R. J. Oakes, B. Renner. 1968. Behavior of Current Divergences under SU3 × SU3. Physical Review 175: 2195–2199 ADSCrossRefGoogle Scholar
  101. 101.
    Gell-Mann, M., M. L. Goldberger, N. M. Kroll, F. E., Low. 1969. Amelioration of Divergence Difficulties in the Theory of Weak Interactions. Physical Review 179: 1518–1527 ADSCrossRefGoogle Scholar
  102. 102.
    Gentile Jr, G. 1940. Osservazioni sopra le statistiche intermedie. Il Nuovo Cimento 17: 493–497 ADSzbMATHCrossRefGoogle Scholar
  103. 103.
    Glashow, S. L. 1961. Partial Symmetries of Weak Interactions. Nuclear Physics 22: 579–588 ADSCrossRefGoogle Scholar
  104. 104.
    Glashow, S. L., S. Weinberg. 1968. Breaking chiral symmetry. Physical Review Letters 20: 224–227 ADSCrossRefGoogle Scholar
  105. 105.
    Glashow, S. L., J. Iliopoulos, L. Maiani. 1970. Weak Interactions with Lepton-Hadron Symmetry. Physical Review D 2: 1285–1292 ADSCrossRefGoogle Scholar
  106. 106.
    Glashow, S. L., J. Iliopoulos. 1971. Divergences of Massive Yang-Mills Theories. Physical Review D 3: 1043–1045 ADSCrossRefGoogle Scholar
  107. 107.
    Goldhaber, G. et al. 1976. Observation in e+e- Annihilation of a Narrow State at 1865-MeV/c2 Decaying to and Kπππ. Physical Review Letters 37: 255–259 ADSCrossRefGoogle Scholar
  108. 108.
    Gol’fand, Y.A, E.P. Likhtman. 1971. Extension of the Algebra of Poincaré Group Generators and Violation of P Invariance. JETP Letters 13: 323–326 [Pisma Zh. Eksp. Teor. Fiz. 13: 452-455] ADSGoogle Scholar
  109. 109.
    Greenberg, O. W. 1964. Spin and Unitary Spin Independence in a Paraquark Model of Baryons and Mesons. Physical Review Letters 13: 598–602 ADSCrossRefGoogle Scholar
  110. 110.
    Greenberg, O. W., A. M. L. Messiah. 1965. Selection Rules for Parafields and the Absence of Para Particles in Nature. Physical Review 138: B1155–B1167 ADSMathSciNetCrossRefGoogle Scholar
  111. 111.
    Gross, D. J., F. Wilczek. 1973a. Ultraviolet Behavior of Non-Abelian Gauge Theories. Physical Review Letters 30 (26): 1343–1346 ADSCrossRefGoogle Scholar
  112. 112.
    Gross, D. J., F. Wilczek. 1973b. Asymptotically Free Gauge Theories. I. Physical Review D 8: 3633–3652 ADSCrossRefGoogle Scholar
  113. 113.
    Gross, D. J., F. Wilczek. 1974. Asymptotically Free Gauge Theories. II. Physical Review D 9: 980–993 ADSCrossRefGoogle Scholar
  114. 114.
    Gursey, F., L. A. Radicati. 1964. Spin and Unitary Spin Independence of Strong Interactions. Physical Review Letters 13: 173–175 ADSMathSciNetCrossRefGoogle Scholar
  115. 115.
    Hagiwara, K., S. Matsumoto, D., Haidt, C.S., Kim. 1994. A Novel approach to confront electroweak data and theory. Zeitschrift für Physik C 64: 559–620. Erratum: Zeitschrift für Physik C 68 (1995) 352 ADSGoogle Scholar
  116. 116.
    Haidt, D. 2004. The Discovery of Neutral Currents. European Physical Journal C 34: 25–31 ADSCrossRefGoogle Scholar
  117. 117.
    Han, M. Y., Y. Nambu. 1965. Three-Triplet Model with Double SU(3) Symmetry. Physical Review 139: B1006–B1010 ADSMathSciNetCrossRefGoogle Scholar
  118. 118.
    Hara, Y. 1964. Unitary Triplets and the Eightfold Way. Physical Review 134: B701–B704 ADSCrossRefGoogle Scholar
  119. 119.
    Harari, H. 1966a. Current Commutators And Representation Mixing. Physical Review Letters 16: 964–967 ADSMathSciNetCrossRefGoogle Scholar
  120. 120.
    Harari, H. 1966b. Current Commutators, Representation Mixing And Magnetic Moments. Physical Review Letters 17: 56–59 ADSCrossRefGoogle Scholar
  121. 121.
    Hasert, F. J. 1973a. Search for Elastic Muon-Neutrino Electron Scattering. Physics Letters B 46: 121–124 ADSCrossRefGoogle Scholar
  122. 122.
    Hasert, F. J. 1973b. Observation of Neutrino-like Interactions without Muon or Electron in the Gargamelle Neutrino Experiment. Physics Letters B 46: 138–140 ADSCrossRefGoogle Scholar
  123. 123.
    Heisenberg, W. 1932. Über den Bau der Atomkerne. I. Zeitschrift für Physik 77: 1–11 ADSzbMATHCrossRefGoogle Scholar
  124. 124.
    Herb, S. W. et al. 1977. Observation of a Dimuon Resonance at 9.5-GeV in 400-GeV Proton-Nucleus Collisions. Physics Review Letters 39: 252–255 ADSCrossRefGoogle Scholar
  125. 125.
    Higgs, P. W. 1964a. Broken Symmetries, Massless Particles and Gauge Fields. Physics Letters 12: 132–133 ADSCrossRefGoogle Scholar
  126. 126.
    Higgs, P. W. 1964b. Broken Symmetries and the Masses of Gauge Bosons. Physics Review Letters 13: 508–509 ADSMathSciNetCrossRefGoogle Scholar
  127. 127.
    Hioki, Z. 1982. How Does the Discovery of Z Boson Improve the Prediction for W± Boson Mass? Progress of Theoretical Physics 68: 2134–2140 ADSCrossRefGoogle Scholar
  128. 128.
    Hom, D. C. et al. 1976. Observation of High Mass Dilepton Pairs in Hadron Collisionsat 400-GeV. Physics Review Letters 36: 1236–1239 ADSCrossRefGoogle Scholar
  129. 129.
    Iliopoulos, J. 1969. Leading Divergences to all Orders of Weak Interactions. ll Nuovo Cimento A 62: 209–228 ADSCrossRefGoogle Scholar
  130. 130.
    Iliopoulos, J. 1974. Plenary Report on Progress in Gauge Theories, ICHEP, London, pp. III89–III116 Google Scholar
  131. 131.
    Iliopoulos, J. 2016. The Making of the Standard Theory. In L. Maiani and L. Rolandi (eds.) The Standard Theory of Elementary Particles. Essays to Celebrate CERN’s 60th Anniversary. World Scientific, Singapore, pp. 29–59 Google Scholar
  132. 132.
    Innes, W. R. et al. 1977. Observation of Structure in the Υ region. Physical Review Letters 39: 1240–2. Erratum-ibid. 39, 1640 (1977) ADSCrossRefGoogle Scholar
  133. 133.
    Ioffe, B. L., E. P. Shabalin. 1967. Neutral Currents and the Applicability Limit of the Theory of Weak Interactions. Yadernaya Fizika 6: 828. English translation: 1968. Soviet Journal of Nuclear Physics 6: 603 Google Scholar
  134. 134.
    Jackiw, R., S. Weinberg. 1972. Weak-Interaction Corrections to the Muon Magnetic Moment and to Muonic-Atom Energy Levels. Physical Review D 5: 2396–2398 ADSCrossRefGoogle Scholar
  135. 135.
    Jarlskog, G., D. Rein. 1990. Large Hadron Collider Workshop: proceedings Aachen, 4–9 October 1990. European Committee for Future Accelerators, CERN, Geneva Google Scholar
  136. 136.
    Katayama, Y., K. Matumoto, S. Tanaka, E. Yamada. 1962. Possible Unified Models of Elementary Particles with Two Neutrinos. Progress of Theoretical Physics 28: 675–689 ADSzbMATHCrossRefGoogle Scholar
  137. 137.
    Kobayashi, M., T. Maskawa. 1973. CP-Violation in the Renormalizable Theory of Weak Interaction. Progress of Theoretical Physics 49: 652–657 ADSCrossRefGoogle Scholar
  138. 138.
    Kuhn, T. 2012. The Structure of Scientific Revolutions, University Press, Chicago Google Scholar
  139. 139.
    LEP Electroweak Working Group,
  140. 140.
    Lorentz, H. A. 1909. The Theory of Electrons and its applications to the Phenomena of Light and Radiant Heat. A course of lectures delivered in Columbia University, New York, in March and April 1906. Dover Publications, New York, 1st edition Google Scholar
  141. 141.
    Low, F. E. 1968. Difficulties of the Theory of Weak Interactions. Comments on Nuclear and Particle Physics 2: 33–35 Google Scholar
  142. 142.
    Maiani, L. 1964. SU(3) Relations between Neutrino Processes. Il Nuovo Cimento 34: 1386–1390 ADSCrossRefGoogle Scholar
  143. 143.
    Maiani, L. 1976. CP-Violation in Purely Lefthanded Weak Interactions. Physics Letters B 62: 183–186 ADSCrossRefGoogle Scholar
  144. 144.
    Maiani, L. 1976b. Weak Interactions of charmed particles. Colloque International du CNRS“Physique du Neutrino a Haute Energie” Paris – March 18–20, 1975. CNRS, Paris Google Scholar
  145. 145.
    Maiani, L. 1980. All you need to know about the Higgs boson. In Vector bosons and Higgs bosons in the Weinberg-Salam theory of weak and electromagnetic interactions, Proceedings of the Summer School on Particle Physics, Gif-sur-Yvette, 3–7 Sep 1979. M. Davier, L. Maiani, C. A. Savoy, J. Scherk, IN2 P3, Paris, pp. 1–52 Google Scholar
  146. 146.
    Maiani, L. 1984. Topics in Neutrino Physics, in: A. Rostagni (ed.). Unified Theories And Their Experimental Tests. Proceedings, International Conference, Venice, Italy, March 16–18, 1982. Cleup, Padova Google Scholar
  147. 147.
    Maiani, L., G. Preparata. 1969. Algebra of Currents. Fortschritte der Physik 17: 537–597 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  148. 148.
    Maiani, L., G. Martinelli, G. C. Rossi, M. Testa. 1987. The Octet Non-Leptonic Hamiltonian and Current Algebra on the Lattice with Wilson Fermions. Nuclear Physics B 289: 505–534 ADSCrossRefGoogle Scholar
  149. 149.
    Maiani, L., L. R. Bassoli. 2013. A caccia del Bosone di Higgs. Magneti, governi, scienziati e particelle nell’impresa scientifica del mondo. Mondadori, Milano Google Scholar
  150. 150.
    Marciano, W., A. Sirlin. 1980. Radiative Corrections to Neutrino Induced Neutral Current Phenomena in the SU (2) L ⊗ U (1) Theory. Physical Review D 22: 2695–2717; Marciano W., A. Sirlin. 1985. Erratum. Physical Review D 31: 213 ADSCrossRefGoogle Scholar
  151. 151.
    Niu, K., E. Mikumo, Y. Maeda. 1971. A Possible decay in flight of a new type particle. Progress of Theoretical Physics 46: 1644–1646 ADSCrossRefGoogle Scholar
  152. 152.
    Niu, K. 2008. Discovery of Naked Charm Particles and Lifetime Differences Among Charm Species using Nuclear Emulsion Techniques innovated in Japan. Proceedings of the Japan Academy B 84: 1–16 ADSCrossRefGoogle Scholar
  153. 153.
    Okubo, S. 1962. Note on Unitary Symmetry in Strong Interaction. Progress of Theoretical Physics 27: 949–966 ADSzbMATHCrossRefGoogle Scholar
  154. 154.
    Pakvasa, H. S. 1976. CP Violation in the Six-quark Model. Physical Review D 14: 305–308 ADSCrossRefGoogle Scholar
  155. 155.
    Patrignani et al. (Particle Data Group). 2016. Chinese Physics C 40: 100001 ADSCrossRefGoogle Scholar
  156. 156.
    Perl, M. L. et al. 1975. Evidence for Anomalous Lepton Production in e+ e- Annihilation. Physical Review Letters 35: 1489–1492 ADSCrossRefGoogle Scholar
  157. 157.
    Politzer, H. D. 1974a. Reliable Perturbative Results for Strong Interactions? Physical Review Letters 30: 1346–1349 ADSCrossRefGoogle Scholar
  158. 158.
    Politzer, H. D. 1974b. Asymptotic Freedom: An Approach to Strong Interactions. Physics Reports 14: 129–180 ADSCrossRefGoogle Scholar
  159. 159.
    Pomarol, A. 2016. Future Direction Beyond the Standard Theory, in The Standard Theory of Particle Physics: Essays to Celebrate CERN’s 60th Anniversary, eds. L. Maiani, L. Rolandi, World Scientific, Singapore, pp. 455–470 Google Scholar
  160. 160.
    Preparata, G., W. I. Weisberger. 1968. Ultraviolet Divergences in Radiative Corrections to Weak Decays. Physical Review 175: 1965–1975 ADSCrossRefGoogle Scholar
  161. 161.
    Richter, B. 1974. e+e-→ Hadrons, Proceedings, 17th International Conference, ICHEP 1974, London, England, July 01–July 10, 1974 and SLAC-PUB-1478 Google Scholar
  162. 162.
    Rújula, A. De, S. L. Glashow. 1975. Is Bound Charm Found? Physical Review Letters 34: 46–49 ADSCrossRefGoogle Scholar
  163. 163.
    Rújula, A. De, H. Georgi, S. L. Glashow. 1976. Charm Spectroscopy via Electron-Positron Annihilation. Physical Review Letters 37: 785–788 ADSCrossRefGoogle Scholar
  164. 164.
    Sakata, S. 1956. On a Composite Model for the New Particles Progress of Theoretical Physics 16: 686–688 ADSMathSciNetCrossRefGoogle Scholar
  165. 165.
    Sakata, S., Z. Maki, M. Nakagawa. 1962. Remarks on the Unified Model of Elementary Particles. Progress of Theoretical Physics 28: 870–880 ADSzbMATHCrossRefGoogle Scholar
  166. 166.
    Salam, A. 1968. Weak and Electromagnetic Interactions. In N. Svartholm (Ed.) Elementary particle theory: Relativistic groups and analyticity. Proceedings of the eighth Nobel symposium. Almquist & Wiksell, Stockholm, pp. 367–377 Google Scholar
  167. 167.
    Salam, A., R. Delbourgo, J. A. Strathdee. 1965. The Covariant theory of strong interaction symmetries. Proceedings of the Royal Society of London A 284: 146–158 ADSMathSciNetCrossRefGoogle Scholar
  168. 168.
    Schopper, H., 2009. LEP – The Lord of the Collider Rings at CERN 1980–2000. The Making, Operation and Legacy of the World’s Largest Scientific Instrument. Springer-Verlag, Berlin Heidelberg Google Scholar
  169. 169.
    Schrödinger, E. 1952. Statistical thermodynamics. Cambridge University Press, Cambridge, 2nd edition Google Scholar
  170. 170.
    Shifman,M. A., A. I. Vainshtein, V. I. Zakharov. 1977. Asymptotic freedom, light quarks and the origin of the ΔI = 1 ∕ 2 rule in the non-leptonic decays of strange particles. Nuclear Physics B 120: 316–324 ADSCrossRefGoogle Scholar
  171. 171.
    Sirlin, A. 1968. Divergent Part of the Second-Order electromagnetic Corrections to the Ratio GA ∕ GV. Physical Review 176: 1871–1880 ADSCrossRefGoogle Scholar
  172. 172.
    Susskind, L. 1979. Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory. Physical Review D 20: 2619–2625 ADSCrossRefGoogle Scholar
  173. 173.
    Sutherland, D. G. 1966. Current Algebra and the Decay ηπ. Physics Letters 23: 384–385 ADSCrossRefGoogle Scholar
  174. 174.
    Tarjanne, P., V. L. Teplitz. 1963. SU(4) Assignments for the Vector Resonances. Physical Review Letters 11: 447–448 ADSCrossRefGoogle Scholar
  175. 175.
    ’t-Hooft, G. 1980. Why do We Need Local Gauge Invariance in Theories with Vector Particles? An Introduction; Which Topological Features of a Gauge Theory can be Responsible for Permanent Confinement? Naturalness, Chiral Symmetry, and Spontaneous Chiral Symmetry Breaking. In Recent Developments in Gauge Theories. Proceedings, Nato Advanced Study Institute, Cargese, France, August 26–September 8, 1979, G. ’t Hooft, C. Itzykson, A. Jaffe, H. Lehmann, P. K. Mitter, I. M. Singer, R. Stora, (eds.), NATO Advanced Study Institutes Series, Springer US, Vol. 59, pp. 101–157 Google Scholar
  176. 176.
    ’t Hooft, G., M. J. G. Veltman. 1972. Regularization and renormalization of gauge fields. Nuclear Physics B 44: 189–213 ADSMathSciNetCrossRefGoogle Scholar
  177. 177.
    Tolman, R. C. 1934. Relativity Thermodynamics and Cosmology. Clarendon Press, Oxford Google Scholar
  178. 178.
    Veltman, M. 1977. Limit on Mass Differences in the Weinberg Model. Nuclear Physics B 123: 89–99 ADSCrossRefGoogle Scholar
  179. 179.
    Veltman, M. 1981. The Infrared-Ultraviolet Connection. Acta Physica Polonica B 12: 437–457 Google Scholar
  180. 180.
    Weinberg, S. 1967. A Model of Leptons. Physical Review Letters 19: 1264–1266 ADSCrossRefGoogle Scholar
  181. 181.
    Weinberg, S. 1973. Current Algebra and Gauge Theories. 1. Physical Review D 8: 605–625 ADSCrossRefGoogle Scholar
  182. 182.
    Weinberg, S. 1976. Implications of Dynamical Symmetry Breaking. Physical Review D 13: 974–996 ADSCrossRefGoogle Scholar
  183. 183.
    Weisskopf, V. 1963. The Place of Elementary Particle Research in the Development of Modern Physics. Physics Today 16: 26–34 CrossRefGoogle Scholar
  184. 184.
    Wess, J., B. Zumino. 1974. Supergauge Transformations in Four-Dimensions. Nuclear Physics B 70: 39–50 ADSMathSciNetCrossRefGoogle Scholar
  185. 185.
    Wigner, E. 1937. On the Consequences of the Symmetry of the Nuclear Hamiltonian on the Spectroscopy of Nuclei. Physical Review 51: 106–119 Google Scholar
  186. 186.
    Wilson, K. G. 1969. Non-Lagrangian Models of Current Algebra. Physical Review 179: 1499–1512 ADSMathSciNetCrossRefGoogle Scholar
  187. 187.
    Wilson, K. G. 1971. The Renormalization Group and Strong Interactions. Physical Review D 3: 1818–1846 ADSMathSciNetCrossRefGoogle Scholar
  188. 188.
    Witten, E. 1981a. Dynamical Breaking of Supersymmetry. Nuclear Physics B 188: 513–554 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  189. 189.
    Witten, E. 1981b. Mass Hierarchies in Supersymmetric Theories. Physics Letters B 105: 267–271 ADSCrossRefGoogle Scholar
  190. 190.
    Zweig, G. 1974. An SU(3) Model For Strong Interaction Symmetry And Its Breaking. 2. CERN-TH-412 Google Scholar

Copyright information

© The Author(s) 2017

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Dipartimento di Fisica and INFNRomeItaly
  2. 2.Max Planck Institute for the History of ScienceBerlinGermany

Personalised recommendations