Advertisement

The European Physical Journal H

, Volume 42, Issue 2, pp 311–393 | Cite as

Stellar structure and compact objects before 1940: Towards relativistic astrophysics

  • Luisa Bonolis
Open Access
Article
Part of the following topical collections:
  1. The Renaissance of Einstein’s Theory of Gravitation

Abstract

Since the mid-1920s, different strands of research used stars as “physics laboratories” for investigating the nature of matter under extreme densities and pressures, impossible to realize on Earth. To trace this process this paper is following the evolution of the concept of a dense core in stars, which was important both for an understanding of stellar evolution and as a testing ground for the fast-evolving field of nuclear physics. In spite of the divide between physicists and astrophysicists, some key actors working in the cross-fertilized soil of overlapping but different scientific cultures formulated models and tentative theories that gradually evolved into more realistic and structured astrophysical objects. These investigations culminated in the first contact with general relativity in 1939, when J. Robert Oppenheimer and his students George Volkoff and Hartland Snyder systematically applied the theory to the dense core of a collapsing neutron star. This pioneering application of Einstein’s theory to an astrophysical compact object can be regarded as a milestone in the path eventually leading to the emergence of relativistic astrophysics in the early 1960s.

References

  1. 1.
    Adams, W.S. 1915. The spectrum of the companion of Sirius. Publications of the Astronomical Society of the Pacific 27: 236–237.ADSCrossRefGoogle Scholar
  2. 2.
    Adams, W.S. 1925a. A Study of the Gravitational Displacement of the Spectral Lines in the Companion of Sirius. Publications of the Astronomical Society of the Pacific 37: 158–158.ADSCrossRefGoogle Scholar
  3. 3.
    Adams, W.S. 1925b. The relativity displacement of the spectral lines in the companion of Sirius. Proceedings of the National Academy of Sciences 11: 382–387.ADSCrossRefGoogle Scholar
  4. 4.
    Alpher, V.S. 2012. Ralph A. Alpher, Robert C. Herman, and the Cosmic Microwave Background Radiation. Physics in Perspective 14 (3): 300–334.ADSCrossRefGoogle Scholar
  5. 5.
    Ambartsumyan, V. and G.S. Saakyan. 1960. The degenerate superdense gas of elementary particles. Soviet Astronomy 4 (2): 187–201. Russian original in Astronomicheskii Zhurnal 37 (2): 193–206.ADSMathSciNetGoogle Scholar
  6. 6.
    Ambartsumyan, V. and G.S. Saakyan. 1962a. On Equilibrium Configurations of Superdense Degenerate Gas Masses. Soviet Astronomy 5 (5): 601–610.ADSGoogle Scholar
  7. 7.
    Ambartsumyan, V. and G.S. Saakyan. 1962b. Internal Structure of Hyperon Configurations of Stellar Masses. Soviet Astronomy 5 (6): 779–784.ADSGoogle Scholar
  8. 8.
    Anderson, W. 1928a. Die ‘Entartung’ des Elektronengases im Innern einiger Sterne. Zeitschrift für Physik 50 (11): 874–877.ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Anderson, W. 1928b. Zur Theorie von G.I. Pokrowski über die obere Grenze für die Masse eines Sternes. Zeitschrift für Physik 53 (7-8): 597–600.ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Anderson, W. 1929a. Die Theorie von G.I. Pokrowski und die Kontraktionsenergie der Sterne. Zeitschrift für Physik 55 (5-6): 386–394.ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Anderson, W. 1929b. Über die Grenzdichte der Materie und der Energie. Zeitschrift für Physik 56 (11-12): 851–856.ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Anderson, W. 1936. Existiert eine obere Grenze für die Dichte der Materie und Energie? I. Teil. Publications of the Tartu Astrophysical Observatory 29 (1): 1–142.ADSzbMATHGoogle Scholar
  13. 13.
    Anonymous. 1938. The San Diego Meeting of the Astronomical Society of the Pacific June 22–23, 1938. Publications of the Astronomical Society of the Pacific 50 (296): 210–231.Google Scholar
  14. 14.
    Atkinson, R. D’E. and F. Houtermans. 1929a. Transmutation of the Lighter Elements in Stars. Nature 123 (3102): 567–568.ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Atkinson, R. D’E. and F. Houtermans. 1929b. Zur Frage der Aufbaumöglichkeit der Elemente in Sternen. Zeitschrift für Physik 54 (9-10): 656–665.ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Baade, W. and F. Zwicky. 1933. Supernovae and cosmic rays. Minutes of the Stanford Meeting, December 15-16, 1933. Physical Review 45 (2): 138–138.Google Scholar
  17. 17.
    Baade, W. and F. Zwicky. 1934a. Cosmic rays from Super-novae. Proceedings of the National Academy of Sciences 20 (5): 259–263.ADSCrossRefGoogle Scholar
  18. 18.
    Baade, W. and F. Zwicky. 1934b. Remarks on Super-Novae and Cosmic Rays. Physical Review 46 (1): 76–77.ADSCrossRefGoogle Scholar
  19. 19.
    Bates, L.F. 1969. Edmund Clifton Stoner. 1899–1968. Biographical Memoirs of Fellows of the Royal Society 15: 201–237.CrossRefGoogle Scholar
  20. 20.
    Baym, G. 1983. Neutron stars: the first fifty years, in P. Schofield (ed.). The Neutron and its Applications, 1982. IOP Conference Series 64. The Institute of Physics, Bristol and London, pp. 45–50.Google Scholar
  21. 21.
    Beckedorff, D.L. 1962. Terminal configurations of stellar evolution. Dissertation (under C. Misner). Princeton University, Department of Mathematics http://www2.physics.umd.edu/˜misner/Beckedorff˙metadata.htm
  22. 22.
    Bergmann, P.G. 1942. Introduction to the Theory of Relativity. Prentice-Hall, New York.Google Scholar
  23. 23.
    Bethe, H. 1939. Energy Production in stars. Physical Review 55 (5): 434–456.ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Bethe, H. 2003. Annual Review of Astronomy and Astrophysics 41: 1–44.ADSCrossRefGoogle Scholar
  25. 25.
    Bethe, H. and R. Peierls. 1934. The “Neutrino”. Nature 133 (3362): 532–532.ADSzbMATHCrossRefGoogle Scholar
  26. 26.
    Bethe, H. and C.L. Critchfield. 1938. The Formation of Deuterons by Proton Combination. Physical Review 54 (4): 248–254.ADSCrossRefGoogle Scholar
  27. 27.
    Bloch, F. 1928. Über die Quantenmechanik der Elektronen in Kristallgittern. Zeitschrift für Physik 52 (7): 555–600.ADSzbMATHGoogle Scholar
  28. 28.
    Blum, A., R. Lalli and J. Renn. 2015. The Reinvention of General Relativity: A Historiographical Framework for Assessing One Hundred Years of Curved Space-time. Isis 106 (3): 598–620.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Blum, A., R. Lalli and J. Renn. 2016. The renaissance of General Relativity: How and why it happened. Annals of Physics (Berlin) 528 (5): 344–349.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Bohr, N. 1986. Collected Works. Volume 9. Nuclear Physics (1929-1952), edited by R. Peierls (Elsevier).Google Scholar
  31. 31.
    Bohr, N. and J.A. Wheeler. 1939. Physical Review 56 (5): 426–450.ADSCrossRefGoogle Scholar
  32. 32.
    Bonolis, L. 2014. From cosmic ray physics to cosmic ray astronomy: Bruno Rossi and the opening of new windows on the universe. Astroparticle Physics 53: 67–85.ADSCrossRefGoogle Scholar
  33. 33.
    Bothe, W. and W. Kolhörster. 1929. Das Wesen der Höhenstrahlung. Zeitschrift für Physik 56 (11-12): 751–777.ADSzbMATHCrossRefGoogle Scholar
  34. 34.
    Bronstein, M. 1929. Zum Strahlungsgleichgewichtsproblem von Milne. Zeitschrift für Physik 58 (9): 696–699.ADSzbMATHCrossRefGoogle Scholar
  35. 35.
    Bronstein, M. 1930. Note on the temperature distribution in the deep layers of stellar atmospheres. Monthly Notices of the Royal Astronomical Society 91: 133–138.ADSzbMATHCrossRefGoogle Scholar
  36. 36.
    Bronstein, M. 1931. Sovremennoe sostoyanie relyativistskoy kosmologii [The Modern State of Relativistic Cosmology]. Uspekhi Fizicheskikh Nauk 11: 124–184.CrossRefGoogle Scholar
  37. 37.
    Burbidge, G. 1959. Estimates of the Total Energy in Particles and Magnetic Field in the Non-Thermal Radio Sources. Astrophysical Journal 129: 849–852.ADSCrossRefGoogle Scholar
  38. 38.
    Burbidge, G. 1962. Nuclear Astrophysics. Annual Review of Nuclear and Particle Science 12: 507–576.ADSCrossRefGoogle Scholar
  39. 39.
    Burbidge, G., M. Burbidge, W. Fowler and F. Hoyle. 1957. Synthesis of the Elements in Stars and cosmological theories. Reviews of Modern Physics 29 (4): 547–650.ADSCrossRefGoogle Scholar
  40. 40.
    Cameron, A.G.W. 1958. Nuclear Astrophysics. Annual Review of Nuclear and Particle Science 8: 299–326.ADSCrossRefGoogle Scholar
  41. 41.
    Cameron, A.G.W. 1959. Neutron Star Models. Astrophysical Journal 130: 884–894.ADSCrossRefGoogle Scholar
  42. 42.
    Cenadelli, D. 2010. Solving the Giant Stars Problem: Theories of Stellar Evolution from The 1930s to The 1950s. Archive for History of Exact Sciences 64 (2): 203–267.CrossRefGoogle Scholar
  43. 43.
    Cernuschi, F. 1939a. Super-Novae and the Neutron-Core Stars. Physical Review 56 (1): 120–120.ADSzbMATHGoogle Scholar
  44. 44.
    Cernuschi, F. 1939b. A Tentative Theory of the Origin of Cosmic Rays. Physical Review 56 (1): 120–121.ADSzbMATHGoogle Scholar
  45. 45.
    Cernuschi, F. 1939c. On the Behavior of Matter at extremely high temperatures and pressures. Physical Review 56 (5): 450–455.ADSzbMATHCrossRefGoogle Scholar
  46. 46.
    Chadwick, J. 1932. Possible Existence of a Neutron. Nature 129 (3252): 312–312.ADSCrossRefGoogle Scholar
  47. 47.
    Chandrasekhar, S. 1929. The Compton Scattering and the New Statistics. Proceedings of the Royal Society A 125 (796): 231–237.Google Scholar
  48. 48.
    Chandrasekhar, S. 1931a. The Maximum Mass of Ideal White Dwarfs. Astrophysical Journal 74: 81–82.ADSzbMATHCrossRefGoogle Scholar
  49. 49.
    Chandrasekhar, S. 1931b. The density of white dwarf stars. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 11 (70): 592–596, Special Issue.Google Scholar
  50. 50.
    Chandrasekhar, S. 1931c. The highly collapsed configurations of a stellar mass. Monthly Notices of the Royal Astronomical Society 91: 456–466.ADSzbMATHCrossRefGoogle Scholar
  51. 51.
    Chandrasekhar, S. 1932. Some Remarks on the State of Matter in the Interior of Stars. Zeitschrift für Astrophysik 5: 321–327.ADSzbMATHGoogle Scholar
  52. 52.
    Chandrasekhar, S. 1934a. The physical state of matter in the interior of stars. The Observatory 57: 93–99.ADSGoogle Scholar
  53. 53.
    Chandrasekhar, S. 1934b. Stellar configurations with degenerate cores. The Observatory 57: 373–377.ADSGoogle Scholar
  54. 54.
    Chandrasekhar, S. 1935a. The highly collapsed configurations of a stellar mass (Second paper). Monthly Notices of the Royal Astronomical Society 95: 207–225.ADSzbMATHCrossRefGoogle Scholar
  55. 55.
    Chandrasekhar, S. 1935b. Stellar configurations with degenerate cores. Monthly Notices of the Royal Astronomical Society 95: 226–260.ADSzbMATHCrossRefGoogle Scholar
  56. 56.
    Chandrasekhar, S. 1935c. Stellar configurations with degenerate cores (Second paper). Monthly Notices of the Royal Astronomical Society 95: 676–693.ADSzbMATHCrossRefGoogle Scholar
  57. 57.
    Chandrasekhar, S. 1939. An introduction to the study of stellar structure. University of Chicago Press.Google Scholar
  58. 58.
    Chandrasekhar, S. 1941. The white dwarfs and their importance for the theories of stellar evolution in Lundmark et al. (eds.) Colloque international d’Astrophysique. Tenu au Collège de France, Paris. 17-23 juillet, 1939 sous la Presidence du Professeur Henry Norris Russell. Les novae et les naines blanches. 1. Observations des novae. Hermann, Paris, pp. 41–48.Google Scholar
  59. 59.
    Chandrasekhar, S. 1964. The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity. Astrophysical Journal 140: 417–433.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Chandrasekhar, S. 1972. A limiting case of relativistic equilibrium, in General Relativity edited by L. O’Raifertaigh, in honor of J.L. Synge. Clarendon Press, Oxford, pp. 185–199.Google Scholar
  61. 61.
    Chandrasekhar, S. 1977. Interview by Spencer Weart on 1977 May 17, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA.Google Scholar
  62. 62.
    Chandrasekhar, S. and C. Møller. 1935. Relativistic degeneracy. Monthly Notices of the Royal Astronomical Society 95: 673–676.ADSzbMATHCrossRefGoogle Scholar
  63. 63.
    Chandrasekhar, S. and L. Rosenfeld. 1935. Production of Electron Pairs and the Theory of Stellar Structure. Nature 135 (3424): 999–999.ADSCrossRefGoogle Scholar
  64. 64.
    Chandrasekhar, S., G. Gamow and M. Tuve. 1938. The Problem of Stellar Energy. Nature 141 (3578): 982–982.ADSCrossRefGoogle Scholar
  65. 65.
    Chandrasekhar, S. and M. Schönberg. 1942. On the Evolution of the Main-Sequence Stars. Astrophysical Journal 96: 161–172.CrossRefGoogle Scholar
  66. 66.
    Chiu, H.-Y. 1964. Gravitational collapse. Physics Today 17 (5): 21–34.CrossRefGoogle Scholar
  67. 67.
    Colgate, S.A. and R.H. White. 1966. The Hydrodynamic Behavior of Supernovae Explosions. Astrophysical Journal 143: 626–681.ADSCrossRefGoogle Scholar
  68. 68.
    Cowling, T.G. 1966. The Development of the Theory of Stellar Structure. Quarterly Journal of the Royal Astronomical Society 7: 121–137.ADSGoogle Scholar
  69. 69.
    Critchfield, C. and E. Teller. 1938. On the Saturation of Nuclear Forces. Physical Review 53 (10): 812–818.ADSzbMATHCrossRefGoogle Scholar
  70. 70.
    Datt, B. 1938. Über eine Klasse von Lösungen der Gravitationsgleichungen der Relativität. Zeitschrift für Physik 108 (5-6): 314–321.ADSzbMATHCrossRefGoogle Scholar
  71. 71.
    Department of Physics, Notre Dame University. 1938. The Notre Dame Symposium on the Physics of the Universe and the Nature of Primordial Particles. Science 87 (2265): 487–490.ADSCrossRefGoogle Scholar
  72. 72.
    Deprit, A. 1984. Monsignor Georges Lemaître. In André Berger (ed.). The Big Bang and Georges Lemaître. Proceedings of a Symposium in Honour of G. Lemaître Fifty Years after his Initiation of Big-Bang Cosmology, Louvain-la-Neuve, Belgium,10-13 October 1983. D. Reidel, Dordrecht, pp. 357–392.Google Scholar
  73. 73.
    Dirac, P.A.M. 1926. On the Theory of Quantum Mechanics. Proceedings of the Royal Society A 112 (762): 661–677.Google Scholar
  74. 74.
    Eddington, A.S. 1922. A Century of Astronomy. Nature 109 (2747): 815–817.ADSCrossRefGoogle Scholar
  75. 75.
    Eddington, A.S. 1924a. On the relation between the masses and luminosities of the stars. Monthly Notices of the Royal Astronomical Society 84: 308–332.ADSCrossRefGoogle Scholar
  76. 76.
    Eddington, A.S. 1924b. Nature. The Relation between the Masses and Luminosities of the Stars. Nature 113 (2848): 786–788.ADSCrossRefGoogle Scholar
  77. 77.
    Eddington, A.S. 1926. The internal constitution of stars. Cambridge University Press.Google Scholar
  78. 78.
    Eddington, A.S. 1927. Stars and Atoms. Clarendon Press, Oxford.Google Scholar
  79. 79.
    Eddington, A.S. 1931. The End of the World: from the Standpoint of Mathematical Physics. Nature 127 (3203): 447–453.ADSzbMATHCrossRefGoogle Scholar
  80. 80.
    Eddington, A.S. 1935a. Relativistic degeneracy. The Observatory 58 (729): 37–39.zbMATHGoogle Scholar
  81. 81.
    Eddington, A.S. 1935b. On ‘relativistic degeneracy’. Monthly Notices of the Royal Astronomical Society 95: 194–206.ADSzbMATHCrossRefGoogle Scholar
  82. 82.
    Eddington, A.S. 1935c. Note on ‘relativistic degeneracy’. Monthly Notices of the Royal Astronomical Society 96: 20–21.ADSzbMATHGoogle Scholar
  83. 83.
    Eddington, A.S. 1935. The Pressure of a Degenerate Electron Gas and Related Problems. Proceedings of the Royal Society 152 (876): 253–272.ADSzbMATHCrossRefGoogle Scholar
  84. 84.
    Ehlers, J. 2009. Editorial note to (Zwicky 1933b). F. Zwicky The redshift of extragalactic nebulae. General Relativity and Gravitation 41 (1): 203–206.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Einstein, A. 1939. On a stationary system with spherical symmetry consisting of many gravitating masses. Annals of Mathematics 40 (4): 922–936.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Eisenstaedt, J. 1986. La relativité générale à l’étiage: 1925–1955. Archive for the History of Exact Sciences 35 (2): 115–185.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Eisenstaedt, J. 1987a. Trajectoires et impasses de la solution de Schwarzschild. Archive for History of Exact Sciences 37 (4): 275–357.ADSMathSciNetzbMATHGoogle Scholar
  88. 88.
    Eisenstaedt, J. 1987b. The low water mark of general relativity, 1925–1955. In Howard D. and Stachel J. (eds.). Einstein and the History of General Relativity. Birkhäuser, Boston, pp. 277–292.Google Scholar
  89. 89.
    Eisenstaedt, J. 1993. Lemaître and the Schwarzschild Solution. In J. Earman, M. Janssen, and J.D. Norton (eds.). The Attraction of Gravitation: New Studies in the History of General Relativity. Proceedings of the Third International Conference on the History and Philosophy of General Relativity. Einstein Studies, Vol. 5. Birkhäuser, Boston, pp. 353–389.Google Scholar
  90. 90.
    Eisenstaedt, J. 2006. The Curious History of Relativity: How Einstein’s Theory of Gravity was Lost and Found Again. Princeton University Press.Google Scholar
  91. 91.
    Eremeeva, A.L. 1995. Political Repression and Personality: The History of Political Repression Against Soviet Astronomers. Journal for the History of Astronomy 26: 297–324.ADSCrossRefGoogle Scholar
  92. 92.
    Fermi, E. 1926a. Sulla quantizzazione del gas perfetto monoatomico. Rendiconti Lincei 3: 145–149. [in Italian] (Presented at the Accademia dei Lincei meeting of February 7, 1926); English translation by Alberto Zannoni. 1999. E. Fermi. On the quantization of the monoatomic ideal gas arXiv:cond-mat/9912229zbMATHGoogle Scholar
  93. 93.
    Fermi, E. 1926b. Zur Quantelung des Idealen Einatomigen Gases. Zeitschrift für Physik 36 (11): 902–912.ADSzbMATHCrossRefGoogle Scholar
  94. 94.
    Fermi, E. 1949. On the Origin of the Cosmic Radiation. Physical Review 75 (8): 1169–1174.ADSzbMATHCrossRefGoogle Scholar
  95. 95.
    Flügge, S. 1933. Der Einfluss der Neutronen auf den inneren Aufbau der Sterne. (Veröffentlichungen der Universitäts–Sternwarte zu Göttingen 31). Dissertation. Zeitschrift für Astrophysik 6: 272–292.ADSzbMATHGoogle Scholar
  96. 96.
    Fowler, R.H. 1926a. On Dense Matter. Monthly Notices of the Royal Astronomical Society 87 (2): 114–122.ADSzbMATHCrossRefGoogle Scholar
  97. 97.
    Fowler, R.H. 1926b. The statistical mechanics of assemblies of ionized atoms and electrons. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1 (4) Special Issue: 845–875.zbMATHCrossRefGoogle Scholar
  98. 98.
    Fowler, R.H. 1926c. General Forms of Statistical Mechanics with Special Reference to the Requirements of the New Quantum Mechanics. Proceedings of the Royal Society A 113 (764): 432–449.Google Scholar
  99. 99.
    Fowler, R.H. 1929. Statistical Mechanics. The theory of the properties of matter in equilibrium. Cambridge University Press New York, The Macmillan Company.Google Scholar
  100. 100.
    Fowler, R.H. and E.A. Milne. 1923. The intensities of absorption lines in stellar spectra, and the temperatures and pressures in the reversing layers of stars. Monthly Notices of the Royal Astronomical Society 83: 403–424.ADSCrossRefGoogle Scholar
  101. 101.
    Fowler, R.H. and E.A. Guggenheim. 1925a. Applications of statistical mechanics to determine the properties of matter in stellar interiors. Part I. The mean molecular weight. Monthly Notices of the Royal Astronomical Society 85: 939–960.ADSCrossRefGoogle Scholar
  102. 102.
    Fowler, R.H. and E.A. Guggenheim. 1925b. Applications of statistical mechanics to determine the properties of matter in stellar interiors. Part II. The Adiabatics. Monthly Notices of the Royal Astronomical Society 85: 961–970.ADSCrossRefGoogle Scholar
  103. 103.
    Fowler, W.A. 1983a. Autobiographical note, Nobel Lectures, Physics 1981-1990. Editor-in-Charge Tore Frängsmyr, Editor Gösta . World Scientific Publishing Co., Singapore, http://www.nobelprize.org/nobel˙prizes/physics/laureates/1983/fowler-bio.html
  104. 104.
    Fowler, W.A. 1983-1986. Interviews by John Greenberg and Carol Bugé. Pasadena, California, 1983 May 3, 1984 May 31, 1986 October 3. Oral History Project, California Institute of Technology Archives.Google Scholar
  105. 105.
    Hoyle, F. and W.A. Fowler. 1963a. On the Nature of Strong Radio Sources. Monthly Notices of the Royal Astronomical Society 125 (2): 169–176.ADSCrossRefGoogle Scholar
  106. 106.
    Hoyle, F. and W.A. Fowler. 1963b. Nature of strong radio sources. Nature 197 (4867): 533–535.ADSCrossRefGoogle Scholar
  107. 107.
    Frenkel, J. 1928. Nouveaux développements de la théorie Électronique des métaux. Atti del Congresso internazionale dei Fisici (11-20 September 1927, Como-Pavia-Roma) edited by the Committee for the celebration of the centennial of the death of Alessandro Volta, N. Zanichelli, Bologna, pp. 65–103.Google Scholar
  108. 108.
    Frenkel, J. 1928a. Zur wellenmechanischen Theorie der metallischen Leitfähigkeit. Zeitschrift für Physik 47 (11): 819–834.ADSzbMATHCrossRefGoogle Scholar
  109. 109.
    Frenkel, J. 1928b. Anwendung der Pauli-Fermischen Elektronengastheorie auf das Problem der Kohäsionskräfte. Zeitschrift für Physik 50 (3-4): 234–248.ADSzbMATHCrossRefGoogle Scholar
  110. 110.
    Frenkel, J. 1928c. Elementare Theorie magnetischer und elektrischer Eigenschaften der Metalle beim absoluten Nullpunkt der Temperatur. Zeitschrift für Physik 49 (1-2): 31–45.ADSzbMATHCrossRefGoogle Scholar
  111. 111.
    Frenkel, V.Y. 1966. Yakow Ilich Frenkel. His work, life and letters. Springer, Basel.Google Scholar
  112. 112.
    Friedmann, A. 1922. Über die Krümmung des Raumes. Zeitschrift für Physik 10 (1): 377–386.ADSzbMATHCrossRefGoogle Scholar
  113. 113.
    Friedman, J.L. 1996. Stability Theory of Relativistic Stars. Journal of Astrophysics and Astronomy 17 (3-4): 199–211.ADSCrossRefGoogle Scholar
  114. 114.
    Gamow, G. et al. 1929. Discussion on the Structure of Atomic Nuclei. Proceedings of the Royal Society A 123 (792): 373–390.Google Scholar
  115. 115.
    Gamow, G. 1930. Mass Defect Curve and Nuclear Constitution. Proceedings of the Royal Society A 126 (803): 632–644.Google Scholar
  116. 116.
    Gamow, G. 1931. Constitution of atomic nuclei and radioactivity. Clarendon Press, Oxford.Google Scholar
  117. 117.
    Gamow, G. and L.D. Landau. 1933. Internal Temperature of Stars. Nature 132 (3336): 567–567.ADSzbMATHCrossRefGoogle Scholar
  118. 118.
    Gamow, G. 1934. Modern Ideas on Nuclear Constitution. Nature 133 (3368): 744–747.ADSzbMATHCrossRefGoogle Scholar
  119. 119.
    Gamow, G. 1935. Nuclear transformation and the origin of chemical elements. Ohio Journal of Science 35 (5): 406–413.Google Scholar
  120. 120.
    Gamow, G. 1937. Atomic nuclei and nuclear transformations. Clarendon Press.Google Scholar
  121. 121.
    Gamow, G. 1938a. Tracks of Stellar Evolution Physical Review 53 (11): 907–908.ADSCrossRefGoogle Scholar
  122. 122.
    Gamow, G. 1938b. Tentative Theory of Novae. Physical Review 54 (6): 480–480.ADSCrossRefGoogle Scholar
  123. 123.
    Gamow, G. 1938c. Zusammenfassender Bericht. Kernumwandlungen als Energiequelle der Sterne. Zeitschrift für Astrophysik 16: 113–160.ADSzbMATHGoogle Scholar
  124. 124.
    Gamow, G. 1939a. Physical Possibilities of Stellar Evolution. Physical Review 55 (8): 718–725.ADSzbMATHCrossRefGoogle Scholar
  125. 125.
    Gamow, G. 1939b. Nuclear Reactions in Stellar Evolution. Nature 144 (3648): 575–577.ADSCrossRefGoogle Scholar
  126. 126.
    Gamow, G. 1949. On Relativistic Cosmology. Reviews of Modern Physics 21 (3): 367–373.ADSCrossRefGoogle Scholar
  127. 127.
    Gamow, G. 1968. Interview by Charles Weiner on 1968 April 25, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA.Google Scholar
  128. 128.
    Gamow, G. 1970. My World Line. An informal autobiography. The Viking Press, New York.Google Scholar
  129. 129.
    Gamow, G. and M. Schönberg. 1940. The Possible Role of Neutrinos in Stellar Evolution. Physical Review 58 (12): 1117–1117.ADSCrossRefGoogle Scholar
  130. 130.
    Gamow, G. and M. Schönberg. 1941. Neutrino Theory of Stellar Collapse. Physical Review 59 (7): 539–547.ADSzbMATHCrossRefGoogle Scholar
  131. 131.
    Gamow, G. and E. Teller. 1938. On the neutron core of stars. Proceedings of the APS, Minutes of the Washington DC Meeting, April 28-30, June 1 1938, Physical Review 53 (11): 929–930.Google Scholar
  132. 132.
    Gamow, G. and E. Teller. 1939. On the Origin of Great Nebulae. Physical Review 55 (7): 654–657.ADSzbMATHCrossRefGoogle Scholar
  133. 133.
    Gamow, G. and J.A. Fleming. 1942. The Eighth Annual Washington Conference of Theoretical Physics. Science 95 (2475): 579–581.ADSCrossRefGoogle Scholar
  134. 134.
    Gorelik, G.E. 2005. Matvei Bronstein and quantum gravity: 70th anniversary of the unsolved problem. Physics-Uspekhi 48 (10): 1039–1053.ADSCrossRefGoogle Scholar
  135. 135.
    Gorelik, G. and V.Y. Frenkel. 1994. Matvei Petrovich Bronstein and Soviet theoretical physics in the thirties. Birkäuser, Basel.Google Scholar
  136. 136.
    Grant, K. 1926. The constitution of stars. Nature 118 (2967): 373–374.ADSCrossRefGoogle Scholar
  137. 137.
    Greenberg, J.L. and J.R. Goodstein. The origins of nuclear astrophysics at Caltech. Humanities Working Paper 97. California Institute of Technology, Pasadena, CA.Google Scholar
  138. 138.
    Greenstein, J.L., and T.A. Matthews. 1963. Red-shift of the unusual radio source: 3C48. Nature 197 (4872): 1041–1042.ADSCrossRefGoogle Scholar
  139. 139.
    Greenstein, J.L., J.B. Oke and H.L. Shipman. 1971. Effective Temperature, Radius, and Gravitational Redshift of Sirius B. Astrophysical Journal 169: 563–566.ADSCrossRefGoogle Scholar
  140. 140.
    Hagihara, Y. 1931. Theory of the Relativistic Trajectories in a Gravitational Field of Schwarzschild. Japanese Journal of Astronomy and Geophysics 8: 67–176.ADSzbMATHGoogle Scholar
  141. 141.
    Hamada, T. and E.E. Salpeter. 1961. Models for Zero-Temperature Stars. Astrophysical Journal 134: 683–698.ADSMathSciNetCrossRefGoogle Scholar
  142. 142.
    Harrison, B.K., M. Wakano and J.A. Wheeler. 1958. Matter-energy at high density; end point of thermonuclear evolution, in R. Stoops (ed.). Proceedings, 11ème Conseil de Physique de l’Institut International de Physique Solvay: La structure et l’évolution de l’univers: rapports et discussions.Google Scholar
  143. 143.
    Harrison, B.K., K.S. Thorne, M. Wakano and J.A. Wheeler. 1965. Gravitation theory and gravitational collapse. University of Chicago Press.Google Scholar
  144. 144.
    Hazard, C., M.B. Mackey and A.J. Shimmins. 1963. Investigation of the Radio Source 3C 273 by the method of lunar occultations. Nature 197 (4872): 1037–1039.ADSCrossRefGoogle Scholar
  145. 145.
    Hoddeson, L., G. Baym and M. Eckert. 1987. The development of the quantum-mechanical electron theory of metals: 1928–1933. Reviews of Modern Physics 59 (1): 287–327.ADSCrossRefGoogle Scholar
  146. 146.
    Hoddeson, L. et al. 1992. Out of the Crystal Maze: Chapters from The History of Solid State Physics. Oxford University Press.Google Scholar
  147. 147.
    Holberg, J.B. 2009. The Discovery of the Existence of White Dwarf Stars: 1862 to 1930. Journal for the History of Astronomy 40: 137–154.ADSCrossRefGoogle Scholar
  148. 148.
    Holberg, J.B. 2010. Sirius B and the Measurement of the Gravitational Redshift. Journal for the History of Astronomy 41 (1): 41–64.ADSCrossRefGoogle Scholar
  149. 149.
    Hubble, E.P. 1929. A Relation between Distance and Radial Velocity among Extragalactic Nebulae. Proceedings of the National Academy of Sciences 15 (3): 168–173.ADSzbMATHCrossRefGoogle Scholar
  150. 150.
    Hubble, E.P. and R.C. Tolman, Astrophysical Journal 82 (2): 302–337.Google Scholar
  151. 151.
    Hufbauer, K. 2006. J. Robert Oppenheimer’s path to black holes, C. Carson and D.A. Hollinger (eds.). Reappraising Oppenheimer. University of California Press, Berkeley, pp. 36–48.Google Scholar
  152. 152.
    Hufbauer, K. 2007. Landau’s youthful sallies into stellar theory: Their origins, claims, and receptions. Historical Studies in the Physical and Biological Sciences 37 (2): 337–354.CrossRefGoogle Scholar
  153. 153.
    Hufbauer, K. 2009. George Gamow. 1904–1968. Biographical Memoirs of the National Academy of Sciences.Google Scholar
  154. 154.
    Hund, F. 1936. Materie unter sehr hohen Drucken und Temperaturen. Ergebnisse der Exakten Naturwissenschaften 15: 189–228. English translation in H. Riffert et al. (eds.). 1996. Matter at high densities in Astrophysics. Compact Stars and the Equation of State. Springer, pp. 217–257.ADSzbMATHGoogle Scholar
  155. 155.
    Israel, W. 1987. Dark stars: the evolution of an idea, in S.W. Hawking and W. Israel (eds.). Three Hundred Years of Gravitation. Cambridge University Press, pp. 199–276.Google Scholar
  156. 156.
    Jeans, J.H. 1927. On liquid stars and the liberation of stellar energy. Monthly Notices of the Royal Astronomical Society 87: 400–414.ADSzbMATHCrossRefGoogle Scholar
  157. 157.
    Kapitza, P.L. and E.M. Lifshitz. 1969. Lev Davydovitch Landau. 1908–1968. Biographical Memoirs of Fellows of the Royal Society 15: 140–158.CrossRefGoogle Scholar
  158. 158.
    Kothari, D.S. 1937. Neutrons, degeneracy and white dwarfs. Proceedings of the Royal Society A 162 (911): 521–528.Google Scholar
  159. 159.
    Kragh, H. 1987. The Beginning of the World: Georges Lemaître and the Expanding Universe. Centaurus 30 (2): 114–139.ADSMathSciNetCrossRefGoogle Scholar
  160. 160.
    Kragh, H. 1996. Cosmology and Controversy. Princeton University Press.Google Scholar
  161. 161.
    Kragh, H. 2005. George Gamow and the ‘Factual Approach’ to Relativistic Cosmology, in A.J. Kox and J. Eisenstaedt (eds.). The Universe of General Relativity, Einstein Studies vol. 11. Birkhäuser, Basel, pp. 175–188.Google Scholar
  162. 162.
    Kragh, H. 2013. ‘The Wildest Speculation of All’: Lemaître and the Primeval-Atom Universe. in R.D. Holder and S. Mitton (eds.). Georges Lemaître: Life, Science and Legacy. Springer-Verlag, Berlin, Heidelberg, pp. 23–38.Google Scholar
  163. 163.
    Krasinski, A. 1999. Editor’s Note: On a Class of Solutions of the Gravitation Equations of Relativity (Datt 1938). General Relativity and Gravitation 31 (10): 1615–1618.MathSciNetzbMATHCrossRefGoogle Scholar
  164. 164.
    Landau, L. 1930. Diamagnetismus der Metalle. Zeitschrift für Physik 64 (9-10): 629–637.ADSzbMATHCrossRefGoogle Scholar
  165. 165.
    Landau, L.D. 1932. On the theory of stars. Physikalische Zeitschrift der Sowjetunion 1 (2): 285–288.zbMATHGoogle Scholar
  166. 166.
    Landau, L.D. 1938. Origin of stellar energy. Nature 141 (3564): 333–334. English version of the paper published in 1937 on Doklady Akademii Nauk SSSR 17: 301–302.ADSCrossRefGoogle Scholar
  167. 167.
    Landau, L.D. and R. Peierls. 1931. Erweiterung des Unbestimmtheitsprinzips für die relativistische Quantentheorie. Zeitschrift für Physik 69 (1-2): 56–69.ADSzbMATHCrossRefGoogle Scholar
  168. 168.
    Langer, R.M. and N. Rosen. 1931. The neutron. Physical Review 37 (12): 1579–1582.ADSzbMATHCrossRefGoogle Scholar
  169. 169.
    Lee, T.D. 1950. Hydrogen content and energy-production of white dwarfs. Astrophysical Journal 111: 625–640.ADSCrossRefGoogle Scholar
  170. 170.
    Lemaître, G. 1927. Un univers homogène de masse constante et de rayon variable rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Annales de la Societé Scientifique de Bruxelles A 47: 49–59.ADSzbMATHGoogle Scholar
  171. 171.
    Lemaître, G. 1931. Expansion of the universe. A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae. Monthly Notices of the Royal Astronomical Society 91: 483–490. English translation of Lemaître (1927). Un univers homogène de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nébuleuses extragalactiques. Annales de la Société Scientifique de Bruxelles A 47: 49–59.ADSzbMATHCrossRefGoogle Scholar
  172. 172.
    Lemaître, G. 1931a. The beginning of the world from the point of view of quantum theory. Nature 127 (3210): 706–706.ADSzbMATHCrossRefGoogle Scholar
  173. 173.
    Lemaître, G. 1931b. Contributions to a British Association Discussion on the Evolution of the Universe. Supplement to Nature 128 (3234): 704–706.ADSCrossRefGoogle Scholar
  174. 174.
    Lemaître, G. 1931c. L’Expansion de l’Espace. Publications du Laboratoire d’Astronomie et de Geodesie de l’Universite de Louvain 8: 101–120.ADSzbMATHGoogle Scholar
  175. 175.
    Lemaître, G. 1932. l’Univers en Expansion. Publications du Laboratoire d’Astronomie et de Geodesie de l’Universite de Louvain 9: 171–205, and in G. Lemaître. 1933. Annales de la Société Scientifique de Bruxelles 53, Série A, Sciences mathématiques: 51–85.ADSGoogle Scholar
  176. 176.
    Lemaître, G. and M.S. Vallarta. 1933. On Compton’s latitude effect of cosmic radiation. Physical Review 43 (2): 87–91.ADSzbMATHCrossRefGoogle Scholar
  177. 177.
    Luyten, W.J. 1960. White dwarfs and stellar evolution. American Scientist 48 (1): 30–39.Google Scholar
  178. 178.
    Marshak, R.E. 1940. The Internal Temperature of White Dwarf Stars. Astrophysical Journal 92: 321–353.ADSCrossRefGoogle Scholar
  179. 179.
    Marshak, R.E. 1970. Interview by C. Weiner on 1970 June 15, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA.Google Scholar
  180. 180.
    Menzel, D.H. 1926. The Planetary Nebulae. Publications of the Astronomical Society of the Pacific 38 (225): 295–312.ADSCrossRefGoogle Scholar
  181. 181.
    Mestel, L. 2004. Arthur Stanley Eddington: pioneer of stellar structure theory. Journal of Astronomical History and Heritage 7 (2): 65–73.ADSGoogle Scholar
  182. 182.
    Migdal, A.B. 1977. Interview by Lillian Hoddeson and Gordon Baym on May 25, 1977, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA.Google Scholar
  183. 183.
    Migdal, A.B. 1959. Superfluidity and the moments of inertia of nuclei. Nuclear Physics 13 (5): 655–674.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  184. 184.
    Miller, J.C. 1993. Relativistic Gravitational Collapse. G. Ellis et al. The Renaissance of General Relativity and Cosmology. A Survey to Celebrate the 65th Birthday of Dennis Sciama. Cambridge University Press, pp. 73–99.Google Scholar
  185. 185.
    Miller, A.I. 2005. Empire of the Stars. Friendship, Obsession and Betrayal in the Quest for Black Holes. Little Brown, London.Google Scholar
  186. 186.
    Milne, E.A. 1929. The masses, luminosities, and effective temperatures of the stars. Monthly Notices of the Royal Astronomical Society 90: 17–54.ADSzbMATHCrossRefGoogle Scholar
  187. 187.
    Milne, E.A. 1930a. The analysis of stellar structure. Monthly Notices of the Royal Astronomical Society 91: 4–55.ADSzbMATHCrossRefGoogle Scholar
  188. 188.
    Milne, E.A. 1930b. The analysis of stellar structure. The Observatory 53: 305–308.ADSGoogle Scholar
  189. 189.
    Milne, E.A. 1930c. Stellar Structure and the Origin of Stellar Energy. Nature 126 (3172): 238–238.ADSCrossRefGoogle Scholar
  190. 190.
    Milne, E.A. 1930d. The masses, luminosities, and effective temperatures of the stars (Second paper). Monthly Notices of the Royal Astronomical Society 90: 678–687.ADSzbMATHCrossRefGoogle Scholar
  191. 191.
    Milne, E.A. 1931a. Stellar Structure and the Origin of Stellar Energy. Nature 127 (3192): 16–18.ADSCrossRefGoogle Scholar
  192. 192.
    Milne, E.A. 1931b. Discussion on the Evolution of the Universe. Nature 128 (3234): 715–717.ADSCrossRefGoogle Scholar
  193. 193.
    Milne, E.A. 1945. Ralph Howard Fowler. 1889-1944. Obituary Notices of Fellows of the Royal Society 5 (14): 60–78.MathSciNetzbMATHCrossRefGoogle Scholar
  194. 194.
    Minkowski, R. 1939. The Spectra of the Supernovae in IC 4182 and in NGC 1003. Astrophysical Journal 89: 156–216.ADSzbMATHCrossRefGoogle Scholar
  195. 195.
    Minkowski, R. 1942. The Crab Nebula. Astrophysical Journal 96: 199–213.ADSCrossRefGoogle Scholar
  196. 196.
    Nadyozhin, D.K. 1995. Gamow and the Physics and Evolution of Stars. Space Science Reviews 74 (3-4): 455-461ADSCrossRefGoogle Scholar
  197. 197.
    Nauenberg, M. 2008. Edmund C. Stoner and the discovery of the maximum mass of white dwarfs. Journal for the History of Astronomy 39: 297–312.ADSCrossRefGoogle Scholar
  198. 198.
    von Neumann, J. 1961. Collected Works, edited by A.H. Taub, Vol. VI. Pergamon Press, London.Google Scholar
  199. 199.
    Oke, J.B. 1963. Absolute energy distribution in the optical spectrum of 3C 273. Nature 197 (4872): 1040–1041.ADSCrossRefGoogle Scholar
  200. 200.
    Öpik, E. 1938. Composite stellar models, Publication of the Tartu University Observatory 30 (4): 1–48.Google Scholar
  201. 201.
    Oppenheimer, J.R. 1926. On the Quantum Theory of the Problem of the Two Bodies. Mathematical Proceedings of the Cambridge Philosophical Society 23: 422–431.zbMATHCrossRefGoogle Scholar
  202. 202.
    Oppenheimer, J.R. and R. Serber. On the Stability of Stellar Neutron Cores. Physical Review 54 (7): 540–540.Google Scholar
  203. 203.
    Oppenheimer, J.R. and G.M. Volkoff. 1939. On Massive Neutron Cores. Physical Review 55 (4): 374–381.ADSzbMATHCrossRefGoogle Scholar
  204. 204.
    Oppenheimer, J.R. and H. Snyder. 1939. On Continued Gravitational Contraction. Physical Review 56 (5): 455–459.ADSzbMATHCrossRefGoogle Scholar
  205. 205.
    Pais, A. 1993. Niels Bohr’s times: in Physics, Philosophy, and Polity. Clarendon Press, Oxford.Google Scholar
  206. 206.
    Parker, E.N. 1997. Subrahmanyan Chandrasekhar. 1910-1995. Biographical Memoirs of the National Academy of Sciences 72: 28–49.Google Scholar
  207. 207.
    Pauli, W. 1925. Über den Zusammenhang des Abschlusses der Elektronengruppen in Atom mit der Komplex Struktur der Spektren. Zeitschrift für Physik 31 (1): 765–783.ADSzbMATHCrossRefGoogle Scholar
  208. 208.
    Pauli, W. 1927. Über Gasentartung und Paramagnetismus. Zeitschrift für Physik 41 (2): 81–102.ADSzbMATHCrossRefGoogle Scholar
  209. 209.
    Peebles, P.J.E. 2014. Discovery of the hot Big Bang: What happened in 1948. The European Physical Journal H 39 (2): 205–223.ADSCrossRefGoogle Scholar
  210. 210.
    Peierls, R. 1936. Note on the derivation of the equation of state for a degenerate relativistic gas. Monthly Notices of the Royal Astronomical Society 96: 780–784.ADSzbMATHCrossRefGoogle Scholar
  211. 211.
    Peierls, R. 1977. Interview by Lillian Hoddeson and Gordon Baym on 1977 May 20, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA.Google Scholar
  212. 212.
    Peierls, R. 1997. Atomic Histories. American Institute of Physics Press.Google Scholar
  213. 213.
    Penrose, R. 1996. Chandrasekhar, Black Holes, and Singularities. Journal of Astrophysics and Astronomy 17 (3-4): 213–232.ADSCrossRefGoogle Scholar
  214. 214.
    Pokrowski, G.I. 1928. Zur Frage nach der oberen Grenze für die Masse eines Sterns. Zeitschrift für Physik 49 (7-8): 587–589.ADSzbMATHCrossRefGoogle Scholar
  215. 215.
    Regener, V. 1931. Über die Herkunft der Ultrastrahlung (Hesschen Strahlung). Die Naturwissenschaften 19 (22): 460–461.ADSzbMATHCrossRefGoogle Scholar
  216. 216.
    Reynolds, J.H. 1923 Gaseous Nebulae. Nature 112 (2810): 375–376.ADSCrossRefGoogle Scholar
  217. 217.
    Robinson, I., A. Schild and E.L. Schucking (eds.). 1965. Quasi-stellar sources and gravitational collapse. Including the proceedings of the First Texas Symposium on Relativistic Astrophysics. University of Chicago Press, Chicago.Google Scholar
  218. 218.
    Rosenfeld, L. 1963. Interview by Thomas S. Kuhn and John L. Heilbron on 1963 July 19, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA.Google Scholar
  219. 219.
    Russell, H.N. 1925a. Relativity Displacement of Spectral Lines and Stellar Constitution. Nature 116 (2912): 285–285.Google Scholar
  220. 220.
    Russell, H.N. 1925b. Remarkable New Tests Favor the Einstein Theory. Scientific American 133 (2): 88–88.ADSCrossRefGoogle Scholar
  221. 221.
    Rutherford, E. 1920. Bakerian Lecture: Nuclear Constitution of Atoms. Proceedings of the Royal Society A 97 (686): 347–400.Google Scholar
  222. 222.
    Salpeter, E.E. 1960. Matter at high densities. Annals of Physics 11 (4): 393–413.ADSMathSciNetCrossRefGoogle Scholar
  223. 223.
    Salpeter, E.E. 1961. Energy and Pressure of a Zero-Temperature Plasma. Astrophysical Journal 134 (3): 669–682.ADSMathSciNetCrossRefGoogle Scholar
  224. 224.
    Sandage, A.R. and M. Schwarzschild. 1952. Inhomogeneous Stellar Models. II. Models with Exhausted Cores in Gravitational Contraction. Astrophysical Journal 116: 463–476.ADSCrossRefGoogle Scholar
  225. 225.
    Sardanashvily, G. 2014. Dmitri Ivanenko (in honor of the 110th year anniversary). Science Newsletter 1: 16–17.Google Scholar
  226. 226.
    Schmidt, M. 1963. 3C 273: A star-like object with large red-shift. Nature 197 (4872): 1040–1040.ADSCrossRefGoogle Scholar
  227. 227.
    Schucking, E. 1989. The first Texas Symposium of Relativistic Astrophysics. Physics Today 42 (8): 46–52.CrossRefGoogle Scholar
  228. 228.
    Schweber, S. 2008. Einstein and Oppenheimer: The Meaning of Genius. Harvard University Press.Google Scholar
  229. 229.
    Serber, R. 1992. The Los Alamos Primer. University of California Press, Berkeley CA.Google Scholar
  230. 230.
    Shaviv, G. 2009. The Life of Stars. The Controversial Inception and Emergence of the Theory of Stellar Structure. The Hebrew University Magnes Press and Springer-Verlag.Google Scholar
  231. 231.
    Smith, H.J. and D. Hoffleit. 1963. Light Variations in the Superluminous Radio Galaxy 3C273. Nature 198 (4881): 650–651.ADSCrossRefGoogle Scholar
  232. 232.
    Sommerfeld, A. 1928a. Zur Elektronentheorie der Metalle und des Volta-Effektes nach der Fermi’schen Statistik. Atti del Congresso internazionale dei Fisici (11-20 September 1927, Como-Pavia-Roma) edited by the Committee for the celebration of the centennial of the death of Alessandro Volta. N. Zanichelli, Bologna, pp. 449–473.Google Scholar
  233. 233.
    Sommerfeld, A. 1928b. Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik. Zeitschrift für Physik 47 (1-2): 1–32.ADSzbMATHCrossRefGoogle Scholar
  234. 234.
    Sommerfeld, A. and H. Bethe. 1933. Elektronentheorie der Metalle, in Aufbau der zusamennhängenden Materie. Handbuch der Physik 24/2: 333–622.Google Scholar
  235. 235.
    Sterne, T.E. 1932. Statistical Mechanics with Particular Reference to the Vapor Pressures and Entropies of Crystals. Reviews of Modern Physics 4 (4): 635–722.ADSzbMATHCrossRefGoogle Scholar
  236. 236.
    Sterne, T.E. 1933a. The equilibrium theory of the abundance of the elements. Physical Review 43 (7): 585–586.ADSzbMATHCrossRefGoogle Scholar
  237. 237.
    Sterne, T.E. 1933b. The equilibrium theory of the abundance of the elements: a statistical investigation of assemblies in equilibrium in which transmutations occur. Monthly Notices of the Royal Astronomical Society 93: 736–766.ADSzbMATHCrossRefGoogle Scholar
  238. 238.
    Sterne, T.E. 1933c. A note on the liberation of energy by transmutations of nuclei in the stars. Monthly Notices of the Royal Astronomical Society 93: 767–769.ADSzbMATHCrossRefGoogle Scholar
  239. 239.
    Sterne, T.E. 1933d. The equilibrium of transmutations in stars in which transmutations are an important source of energy. Monthly Notices of the Royal Astronomical Society 93: 770–776.ADSzbMATHCrossRefGoogle Scholar
  240. 240.
    Stoner, E.C. 1924. The Distribution of Electrons among Atomic Levels. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 48 (286): 719–736.CrossRefGoogle Scholar
  241. 241.
    Stoner, E.C. 1929. The limiting density in white dwarf stars. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 7 (41): 63–70.zbMATHCrossRefGoogle Scholar
  242. 242.
    Stoner, E.C. 1930. The equilibrium of dense stars. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 9 (60): 944–963.zbMATHCrossRefGoogle Scholar
  243. 243.
    Strömgren, B. 1931. The Point-Source Model with Coefficient of Opacity k = k1ρ T-3.5. Zeitschrift für Astrophysik 2: 345–369.ADSzbMATHGoogle Scholar
  244. 244.
    Strömgren, B. 1937. Die Theorie des Sterninnern und die Entwicklung der Sterne. Ergebnisse der Exakten Naturwissenschaften 16: 465–534.ADSzbMATHCrossRefGoogle Scholar
  245. 245.
    Strömgren, B. 1978. Interview by Karl Hufbauer on 1978 April 24, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA.Google Scholar
  246. 246.
    Suzuki, S. 1931. Constitution of the white dwarf stars. Nature 128 (3237): 838–838.ADSzbMATHCrossRefGoogle Scholar
  247. 247.
    Synge, J.L. 1950. The gravitational field of a particle. Proceedings of the Royal Irish Academy A 53: 83–114.Google Scholar
  248. 248.
    Taub, A.H., O. Veblen and J. von Neumann. 1934. The Dirac equation in projective relativity. Proceedings of the National Academy of Sciences of the United States of America 20 (6): 383–388.ADSzbMATHCrossRefGoogle Scholar
  249. 249.
    Tauber, G.E. and J.W. Weinberg. 1961. Internal State of a Gravitating Gas. Physical Review 122 (4): 1342–1346.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  250. 250.
    Thirring, H. 1926. Neuere experimentelle Ergebnisse zur Relativitätstheorie. Die Naturwissenschaften 14 (7): 111–116.ADSzbMATHCrossRefGoogle Scholar
  251. 251.
    Thomas, E. 2011. On Stoner and white dwarf stars. Philosophical Magazine 91 (26): 3416–3422.ADSCrossRefGoogle Scholar
  252. 252.
    Thorne, K.S. 1989. Giant and supergiant stars with degenerate neutron cores. Astrophysical Journal 346: 277–283.ADSCrossRefGoogle Scholar
  253. 253.
    Thorne, K.S. 1994. Black Holes and Time Warps. Einstein’s Outrageous Legacy. W.W. Norton & Company, 1st ed.Google Scholar
  254. 254.
    Thorne, K.S. 2003. Warping spacetime, in G.W. Gibbons et al. (eds.) The future of theoretical physics and cosmology: celebrating Stephen Hawking’s 60th birthday. Cambridge University Press, pp. 74–104.Google Scholar
  255. 255.
    Tolman, R.C. 1934. Relativity, Thermodynamics, and Cosmology. Clarendon Press, Oxford.Google Scholar
  256. 256.
    Tolman, R.C. 1934a. Effect of Inhomogeneity on Cosmological Models. Proceedings of the National Academy of Sciences 20 (3): 169–176.ADSzbMATHCrossRefGoogle Scholar
  257. 257.
    Tolman, R.C. 1939a. Static Solutions of Einstein’s Field Equations for Spheres of Fluid. Physical Review 55 (4): 364–373.ADSzbMATHCrossRefGoogle Scholar
  258. 258.
    Tolman, R.C. 1939b. On the Stability of Spheres of Simple Mechanical Fluid Held Together by Newtonian Gravitation. Astrophysical Journal 90: 541–567.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  259. 259.
    Tolman, R.C. 1939c. On the Stability of Stellar Models, with Remarks on the Origin of Novae. Astrophysical Journal 90: 568–600.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  260. 260.
    Vardya, M.S. 1994. Astrophysics Contributions of Indian Scientists. Defence Science Journal 44 (3): 207–213.CrossRefGoogle Scholar
  261. 261.
    Volkoff, G.M. 1939a. On the equilibrium of massive neutron cores. Physical Review 55 (4): 421–422.ADSzbMATHCrossRefGoogle Scholar
  262. 262.
    Volkoff, G.M. 1939b. On the equilibrium of massive spheres. Physical Review 55 (4): 413–413.ADSzbMATHCrossRefGoogle Scholar
  263. 263.
    Volkoff, M. 1990. Interview by Ann Carroll on 1990 May 23, University of British Columbia Archives Audio Recording Collection.Google Scholar
  264. 264.
    Wali, K.C. 1990. Chandra. A biography of S. Chandrasekhar. University of Chicago Press.Google Scholar
  265. 265.
    Walke, H.J. 1935. Nuclear synthesis and stellar radiation. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 19 (126): 341–367.zbMATHCrossRefGoogle Scholar
  266. 266.
    von Weizsäcker, C.F. 1937a. Die Atomkerne. Akademische Verlagsgesellschaft, Leipzig.Google Scholar
  267. 267.
    von Weizsäcker, C.F. 1937b. Über Elementumwandlungen im Innern der Sterne. I (On transformations of elements in the interiors of stars. I). Physikalische Zeitschrift 38: 176–191.zbMATHGoogle Scholar
  268. 268.
    von Weizsäcker, C.F. 1938. Über Elementumwandlungen im Innern der Sterne. II (On transformations of elements in the interiors of stars. II). Physikalische Zeitschrift 39: 633–646.zbMATHGoogle Scholar
  269. 269.
    Wheeler, J.A. 1968. Our Universe: The Known and the Unknown, address before the American Association for the Advancement of Science, New York, 29 Dec. 1967. American Scientist 56 (1): 1–20.ADSGoogle Scholar
  270. 270.
    Wheeler, J.A. 1998. Geons, Black Holes, and Quantum Foam: A Life in Physics. W.W. Norton & Co Inc.Google Scholar
  271. 271.
    Yakovlev, D.G. 1994. The article by Ya I Frenkel’ on ‘binding forces’ and the theory of white dwarfs. Physics Uspekhi 37 (6): 609–612.ADSCrossRefGoogle Scholar
  272. 272.
    Yakovlev, D.G. et al. 2013. Lev Landau and the conception of neutron stars. Physics Uspekhi 56 (3): 289–295.ADSCrossRefGoogle Scholar
  273. 273.
    Zeldovich, Y.B. 1962a. The equation of state at ultrahigh densities and its relativistic limitations. Soviet physics JETP 14 (5): 1142–1147.Google Scholar
  274. 274.
    Zeldovich, Y.B. 1962b. The Collapse of a Small Mass in the General Theory of Relativity. Soviet physics JETP 15 (2): 446–447.Google Scholar
  275. 275.
    Zeldovich, Y.B. and I. Novikov. 1966. Relativistic Astrophysics. II. 1966. Soviet Physics Uspekhi 8 (4): 522–575.ADSMathSciNetCrossRefGoogle Scholar
  276. 276.
    Zwicky, F. 1929. On the Red Shift of Spectral Lines through Interstellar Space. Proceedings of the National Academy of Sciences 15 (10): 773–779.ADSzbMATHCrossRefGoogle Scholar
  277. 277.
    Zwicky, F. 1933a. How far do cosmic rays travel? Physical Review 43 (2): 147–148.ADSzbMATHCrossRefGoogle Scholar
  278. 278.
    Zwicky, F. 1933b. F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta 6: 110–127. English translation: F. Zwicky. 2009. Republication of: The redshift of extragalactic nebulae. General Relativity and Gravitation 41 (1): 207–224.ADSzbMATHCrossRefGoogle Scholar
  279. 279.
    Zwicky, F. 1938a. Some Results of the Search for Super-Novae. Physical Review 53 (12): 1019–1020.ADSCrossRefGoogle Scholar
  280. 280.
    Zwicky, F. 1938b. On neutron stars, Minutes of the San Diego Meeting, June 22-24, 1938. Physical Review 54 (3): 242–242.Google Scholar
  281. 281.
    Zwicky, F. 1938c. On Collapsed Neutron Stars. Astrophysical Journal 88: 522–525.ADSCrossRefGoogle Scholar
  282. 282.
    Zwicky, F. 1939. On the Theory and Observation of Highly Collapsed Stars. Physical Review 55 (8): 726–743.ADSzbMATHCrossRefGoogle Scholar
  283. 283.
    Zwicky, F. 1940. Types of Novae. Reviews of Modern Physics 12 (1): 66–85.ADSCrossRefGoogle Scholar
  284. 284.
    Zwicky, F. 2009. The redshift of extragalactic nebulae. General Relativity and Gravitation 41 (1): 203–206.zbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Max Planck Institut für WissenschaftsgeschichteBerlinGermany

Personalised recommendations