The European Physical Journal H

, Volume 42, Issue 1, pp 1–21 | Cite as

A life in statistical mechanics

Part 1: From Chedar in Taceva to Yeshiva University in New York
Open Access
Oral history interview

Abstract

This is the first part of an oral history interview on the lifelong involvement of Joel Lebowitz in the development of statistical mechanics. Here the covered topics include the formative years, which overlapped the tragic period of Nazi power and World War II in Europe, the emigration to the United States in 1946 and the schooling there. It also includes the beginnings and early scientific works with Peter Bergmann, Oliver Penrose and many others. The second part will appear in a forthcoming issue of Eur. Phys. J. H.

References

  1. 1.
    Aharonov, Y., P.G. Bergmann and J.L. Lebowitz. 1964. Time Symmetry in the Quantum Process of Measurement. Phys. Rev. 134: 1410–1416. ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Aharonov, Y., S. Popescue and J. Tollaksen. 2010. A time-symmetric formulation of quantum mechanics. Physics Today 63: 27–33. CrossRefGoogle Scholar
  3. 3.
    Bergmann, P.G. 1951. Generalized Statistical Mechanics. Phys. Rev. 84: 1026–1033. ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bergmann, P.G. and J.L. Lebowitz. 1955. New Approach to Nonequilibrium Processes. Phys. Rev. 99: 578–587. ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bergmann, P.G. and A.C. Thomson. 1953. Generalized Statistical Mechanics and the Onsager Relations. Phys. Rev. 91: 180–184. ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Carlen, E.A., R. Esposito, J.L. Lebowitz, R. Marra and C. Mouhot. 2016. Approach to the steady state in kinetic models with thermal reservoirs at different temperatures. arXiv:1609.00580[math-ph]
  7. 7.
    Döblin, W. 1937. Le cas discontinu des probabilités en chaine. Publications de la Faculté des Sciences de l’Université Masaryk (Brno) 236: 1–13. Google Scholar
  8. 8.
    Doob, J.L. 1953. Stochastic Processes. John Wiley & Sons, New York. Google Scholar
  9. 9.
    Gross, E.P. and J.L. Lebowitz, 1956. Quantum Theory of Dielectric Relaxation. Phys. Rev. 104: 1528–1531. ADSCrossRefMATHGoogle Scholar
  10. 10.
    Helfand, E., H. Reiss, H.L. Frisch and J.L. Lebowitz, 1960. Scaled Particle Theory of Fluids. The Journal of Chemical Physics 33 (5): 1379-1385 ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Kac, M., G.E. Uhlenbeck and P.C. Hemmer. 1963a. On the van der Waals Theory of the Vapor- Liquid Equilibrium. I. Discussion of a One-Dimensional Model. J. Math. Phys. 4: 216–228. ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kac, M., G.E. Uhlenbeck and P.C. Hemmer. 1963b. On the van derWaals Theory of the Vapor-Liquid Equilibrium. II. Discussion of the Distribution Functions. J. Math. Phys. 4: 229–247. ADSCrossRefMATHGoogle Scholar
  13. 13.
    Kac, M., G.E. Uhlenbeck and P.C. Hemmer. 1964. On the van der Waals Theory of the Vapor-Liquid Equilibrium. II. Discussion of the Critical Region. J. Math. Phys. 5: 60–74. ADSCrossRefMATHGoogle Scholar
  14. 14.
    Khinchin, A.Y. 1949. Mathematical Foundations of Statistical Mechanics. Translated from Russian by George Gamow. Dover Publications. Google Scholar
  15. 15.
    Lax, M. and J.L. Lebowitz. 1954. Moment Singularity Analysis of Vibration Spectra. Phys. Rev. 96: 594–958. ADSCrossRefMATHGoogle Scholar
  16. 16.
    Lebowitz, J.L. 1964. Exact Solution of Generalized Percus-Yevick Equation for a Mixture of Hard Spheres. Phys. Rev. 133: 895–899. ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Lebowitz, J.L. and P.G. Bergmann. 1957. Irreversible Gibbsian ensembles. Ann. Phys. 1: 1–23. ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lebowitz, J.L., T. Burke and E. Lieb. 1966. Phase Transition in a Model Quantum System: Quantum Corrections to the Location of the Critical Point. Phys. Rev. 149: 118–122. ADSCrossRefGoogle Scholar
  19. 19.
    Lebowitz, J.L., A. Mazel and E. Presutti. 1999. Liquid-vapor phase transitions for systems with finite-range interactions. J. Stat. Phys. 94: 955–1025. ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Lebowitz, J.L. and J.S. Rowlinson. 1964. Thermodynamic Properties of Mixtures of Hard Spheres. J. Chem. Phys. 41: 133–138. ADSCrossRefGoogle Scholar
  21. 21.
    Lebowitz, J.L. and L. Onsager. 1958. Low Temperature Physics & Chemistry. Proceedings of the Fifth International Conference on Low Temperature Physics and Chemistry. The University of Wisconsin Press, Madison, 50. Google Scholar
  22. 22.
    Lebowitz, J.L. and O. Penrose. 1966. Rigorous Treatment of the Van der Waals Maxwell Theory of the Liquid-Vapor Transition. J. Math. Phys. 7: 98–113. ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Lieb E. 1966. Quantum-Mechanical Extension of the Lebowitz-Penrose Theorem on the Van der Waals Theory J. Math. Phys. 7: 1016–1024. ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Onsager, L. 1944. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65: 117–149. ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Onsager, L. and S. Machlup. 1953. Fluctuations and Irreversible Processes. Phys. Rev. 91: 1505–1512. ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Panofsky, W.K.H. and M. Phillips. 1955. Classical Electricity and Magnetism. Dover Publications. Google Scholar
  27. 27.
    Penrose, O. and J.L. Lebowitz. 1971. Rigorous treatment of metastable states in the van der Waals-Maxwell theory. J. Stat. Phys. 3: 211–236. ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Pirogov, S.A. and Ya.G. Sinai. 1975. Phase diagrams of classical lattice systems (Russian). Theor. Math. Phys. 25: 358–369. CrossRefGoogle Scholar
  29. 29.
    Pirogov, S.A. and Ya.G. Sinai. 1976. Phase diagrams of classical lattice systems. Continuation (Russian). Theor. Math. Phys. 26: 61–76. CrossRefGoogle Scholar
  30. 30.
    Presutti, E. 2009. Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Springer. Google Scholar
  31. 31.
    Reiss, H., H.L. Frisch and L. Lebowitz. 1959. Statistical Mechanics of Rigid Spheres. J. Chem. Phys. 31: 369–380. ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Ruelle D. 1971. Existence of a Phase Transition in a Continuous Classical System. Phys. Rev. Lett. 27: 1040–1041. ADSCrossRefGoogle Scholar
  33. 33.
    Susskind, L. 2005. The Cosmic Landscape. String theory and the illusion of intelligent design. Little, Brown and Company. Google Scholar
  34. 34.
    Van Hove, L. 1953. The Occurrence of Singularities in the Elastic Frequency Distribution of a Crystal. Phys. Rev. 89: 1189–1193. ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2017

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Departments of Mathematics and Physics, Rutgers, The State UniversityPiscatawayUSA
  2. 2.Max Planck Institute for the History of ScienceBerlinGermany

Personalised recommendations