The European Physical Journal H

, Volume 42, Issue 2, pp 261–291 | Cite as

Wired by Weber

The story of the first searcher and searches for gravitational waves
Open Access
Personal recollection
Part of the following topical collections:
  1. The Renaissance of Einstein’s Theory of Gravitation

Abstract

Joseph Weber started thinking about possibilities for detecting gravitational waves or radiation in about 1955. He designed, built, and operated the first detectors, from 1965 until his death in 2000. This paper includes discussions of his life, earlier work on chemical kinetics and what is now called quantum electronics, his published papers, pioneering work on gravitational waves, and its aftermath, both scientific and personal.

References

  1. 1.
    Abbott, B.P. et al. 2016. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 116: 061102-1–061102-14.ADSCrossRefGoogle Scholar
  2. 2.
    Adler, R.J., H.J. Bazin and H. Shifter. 1975. Introduction to General Relativity, 2nd Ed. McGraw Hill.Google Scholar
  3. 3.
    Amaldi, E., P. Bonifazi, S. Frasca, M. Gabellieri, D. Gretz, G.V. Pallottino, G. Pizzella, J. Weber and G. Wilmot. 1988. Analysis of the data recorded by the Maryland and Rome room temperature gravitational wave antennas in the period of the SN 1987A. In M. Kafatos and A.G. Michalitsianos, eds. Supernova 1987A in the Large Magellanic Cloud, Cambridge University Press, Cambridge, pp. 453–462.Google Scholar
  4. 4.
    Anonymous. 2016. The Economist, 13 February, p. 77.Google Scholar
  5. 5.
    Aufmuth, P. http://www.geo600.uni-hannover.de/˜aufmuth/JoeWeber.pdf (“Joseph Weber 1919–2000 Offizier & Gentleman”) accessed October, 2016.
  6. 6.
    Bartusiak, M. 2000. Einstein’s Unfinished Symphony. Joseph Henry Press, Washington, DC.Google Scholar
  7. 7.
    Bartusiak, M. 2016. The long road to detecting gravity waves. Science News 189: 24–27.Google Scholar
  8. 8.
    Basov, N.G. and A.H. Prokhorov. 1954. Application of molecular beams for radiospectroscopic study of molecular rotational spectra. Journal of Experimental and Theoretical Physics 27: 431–438 (the page numbers are different in the English translation).Google Scholar
  9. 9.
    Bergmann, P.G. 1962. Allocution de Cloture/Summary of the Colloque International de Royaumont. In Lichnerowicz and Tonnelat (1962), pp. 463–471 in English, 451–462 in French.Google Scholar
  10. 10.
    Bertolotti, M. 1983. Masers and Lasers: An Historical Approach. Adam Hilger, Bristol.Google Scholar
  11. 11.
    Blum, A.S., R. Lalli and J. Renn. 2015. The Re-invention of General Relativity: A Historiographical Framework for Assessing One Hundred Years of Curved Space-time. ISIS 106: 598–620.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bloembergen, N. 1956. Proposal for a new type solid state maser. Phys. Rev. 104: 324–327.ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Bondi, H. 1957. Plane gravitational waves in general relativity. Nature 179: 1072–1073.ADSMATHCrossRefGoogle Scholar
  14. 14.
    Bondi, H. 1962. On the physical characteristics of gravitational waves. In Lichnerowicz and Tonnelat (1962), pp. 129–135.Google Scholar
  15. 15.
    Bondi, H. 1965. Some special solutions of the Einstein equations. In A. Trautman, F.A.E. Pirani, and H. Bondi, eds. Lectures on General Relativity. Prentice Hall, Englewood Cliffs NS, pp. 375–489.Google Scholar
  16. 16.
    Bondi, H. and W.H. McCrea. 1960. Energy transfer by gravitation in Newtonian Theory. Proceedings of the Cambridge Philosophical Society 56: 410–413.ADSMathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Bonnor, W.B. 1957. Non-singular fields in general relativity. J. Math & Mech. 6: 213.MathSciNetMATHGoogle Scholar
  18. 18.
    Bonnor, W.B. 1959. Spherical gravitational waves. Phil. Trans. Roy. Soc. A 251: 233–271.ADSMathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Brans, C. and R.H. Dicke. 1961. Mach’s principle and a relativistic theory of gravitation. Physical Review 124: 925–935.ADSMathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Brill, D. 1959. On the positive definite mass of the Bondi-Weber-Wheeler time-symmetric gravitational waves. Annals of Physics 7: 466–483.ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Cameron, A.G.W., ed. 1963. Interstellar Communication. Benjamin Press, New York.Google Scholar
  22. 22.
    Campbell, C. 1960. The design of a two-level solid state maser. Ph.D. Thesis, Univ. of St. Andrews.Google Scholar
  23. 23.
    Collins, H. 2004. Gravity’s Shadow. Univ. of Chicago Press, Chicago.Google Scholar
  24. 24.
    Collins, H. 2011. Gravity’s Ghost. Univ. of Chicago Press, Chicago.Google Scholar
  25. 25.
    Damour, T. 1987. The problem of motion in Newtonian and Einsteinian gravity. In. S.W. Hawking and W. Israel, eds. 300 Years of Gravitation. Cambridge University Press, Cambridge, pp. 128–198.Google Scholar
  26. 26.
    Davis, H., D. Gretz, J.P. Richard and J. Weber. 1977. Development of cryogenic gravitational wave antennas at the University of Maryland. 8th International Conference on General Relativity and Gravitation, Waterloo, Canada, August 10, 1977.Google Scholar
  27. 27.
    Dyson, F.J. 1963. In Cameron (1963), p. 115.Google Scholar
  28. 28.
    Eddington, A.S. 1923. The Propagation of gravitational waves. Proc. Roy. Soc. A 102: 268–282.ADSMATHCrossRefGoogle Scholar
  29. 29.
    Eddington, A.S. 1924. The Mathematical Theory of Relativity, 2nd Ed., Cambridge University Press, Cambridge, sect. 57.Google Scholar
  30. 30.
    Einstein, A. 1916. Näherungsweise Integration der Feldgleichungen der Gravitation. Preuss. Akad. Wiss. Berlin, Sitzungsberichte der Physikalisch-mathematischen Klasse: 688–696.Google Scholar
  31. 31.
    Einstein, A. 1917. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Preuss. Akad. Wiss. Berlin, Sitzungsberichte der Physikalisch-mathematischen Klasse: 142–152.Google Scholar
  32. 32.
    Einstein, A. 1918. Über Gravitationswellen. Preuss. Akad. Wiss. Berlin, Sitzungsberichte der Physikalisch-mathematischen Klasse: 154–167.Google Scholar
  33. 33.
    Einstein, A. and N. Rosen. 1937. On Gravitational Waves. Journal of the Franklin Institute 223: 43–54.ADSMathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Einstein, A., L. Infeld and B. Hoffmann. 1938. The gravitational equations and the problem of motion. Ann. Math. 59: 65–100.ADSMathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Feynman, R.P. 1962–63. Lectures on Gravitation, notes taken, duplicated and distributed by Fernando B. Moringigo & William G. Wagner.Google Scholar
  36. 36.
    Fierz, M. and W. Pauli. 1939. Relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. Roy. Soc. A 173: 211–232.ADSMathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Forward, R.L. 1971. Multidirectional multipolarization antennas for scalar and tensor gravitational radiation. General Relativity and Gravitation 2: 149–159.ADSCrossRefGoogle Scholar
  38. 38.
    Forward, R.L. 1978. Wideband laser-interferometer gravitational-radiation experiment. Physical Review D 17: 379–390.ADSCrossRefGoogle Scholar
  39. 39.
    Forward, R.L., D. Zipoy, J. Weber, S. Smith and H. Benioff. 1961. Upper limit for interstellar millicycle gravitational radiation. Nature 189: 473.ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Foures-Bruhat, Y. 1956. Sur l’intégration des équations de la relativité générale. J. Rat. Mech. Anal. 5: 951–966.MathSciNetMATHGoogle Scholar
  41. 41.
    Franklin, A. 1994. How to avoid the experimenters’ regress. Studies in the History and Philosophy of Modern Physics 25: 463–491.CrossRefGoogle Scholar
  42. 42.
    Franklin, A. 2010. Gravity Waves and Neutrinos: The Later Work of Joseph Weber. Perspectives in Science 18: 119–151 and references therein.CrossRefGoogle Scholar
  43. 43.
    Galeotti, P. and G. Pizzella. 2016. New analysis for the correlation between gravitational wave and neutrino detectors during SN1987A. Eur. Phys. J. C 76: 426.ADSCrossRefGoogle Scholar
  44. 44.
    Glanz, J. 2000. Obituary of Joseph Weber. New York Times, 9 October, p. A19.Google Scholar
  45. 45.
    Good, W.E. 1946. The Inversion Spectrum of Ammonia. Phys. Rev. 70: 213–218.ADSCrossRefGoogle Scholar
  46. 46.
    Gordon, J.P., H.J. Zeiger and C.H. Townes. 1954. The maser – New type of microwave amplifier, frequency standard, and spectrometer. Phys. Rev. 95: 282–290.ADSCrossRefGoogle Scholar
  47. 47.
    Gutfreund, H. and J. Renn. 2015. The Road to Relativity. Princeton Univ. Press, Princeton, NJ.Google Scholar
  48. 48.
    Hartle, J.P. 2003. Gravity. Addison Wesley, San Francisco, CA.Google Scholar
  49. 49.
    Hirakawa, H. and K. Narihara. 1975. Search for Gravitational Radiation at 145 Hz. Phys. Rev. Lett. 35: 330–334.ADSCrossRefGoogle Scholar
  50. 50.
    Hockey, T. et al., eds. 2014. Biographical Encyclopedia of Astronomers, 2nd Ed. Springer, New York, NY, pp. 823–825.Google Scholar
  51. 51.
    Homans, J. 2012. Tony Judt: A Final Victory. New York Review of Books, 22 May.Google Scholar
  52. 52.
    Infeld, L. 1936. The New Action Function and the Unitary Field Theory. Proc. Cambridge Philos. Soc. 32: 127–137.ADSMATHCrossRefGoogle Scholar
  53. 53.
    Infeld, L. 1937. A new group of action functions in the unitary field theory. II. Proc. Cam. Phil. Soc. 33: 70–78.ADSMATHCrossRefGoogle Scholar
  54. 54.
    Infeld, L. 1938. Electromagnetic and gravitational radiation. Phys. Rev. 53: 836–841.ADSMATHCrossRefGoogle Scholar
  55. 55.
    Infeld, L. 1954. On the motion of bodies in general relativity theory. Acta Physica Polonica 13: 187–204.MathSciNetMATHGoogle Scholar
  56. 56.
    Infeld, L. 1956. On equations of motion in general Relativity Theory. Helvetica Physica Acta 29: 206–209.MathSciNetGoogle Scholar
  57. 57.
    Infeld, L. 1957. Equations of motion in general relativity and the action principle. Rev. Mod. Phys. 29: 398–411.ADSMathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Infeld, L. 1959. Equations of motion and gravitational radiation. Ann. Phys. 6: 341–367.ADSMathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Infeld, L. and R. Michalska-Trautman. 1960. The two-body problem and gravitational radiation. Ann. Phys. 55: 561–575.ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    Infeld, L. and J. Plebanski. 1960. Motion and Relativity. Pergamon Press, Oxford UK.Google Scholar
  61. 61.
    Infeld, L. and A.E. Scheidegger. 1951. Radiation and gravitational equations of motion. Canadian J. Math. 3: 195–207.MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    Infeld, L. and A. Schild. 1949. On the motion of test particles in general relativity. Rev. Mod. Phys. 21: 408–413.ADSMathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Infeld, L. and P.R. Wallace 1940. The equations of motion in electrodynamics. Phys. Rev. 57: 797–806.ADSMathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    Johnson, F.M. 2016. Personal communication.Google Scholar
  65. 65.
    Kaiser, D. 1987. Roger Babson and the Rediscovery of General Relativity. In Making Theory and Theorists in Postwar America. Ph.D. Dissertation, Harvard University, pp. 567–595.Google Scholar
  66. 66.
    Kastler, A. 1985. Birth of the maser and laser. Nature 316: 307–309.CrossRefGoogle Scholar
  67. 67.
    Kennefick, D. 2007. Traveling with the speed of thought: Einstein and the quest for gravitational waves. Princeton Univ. Press, Princeton, NJ, esp. pp. 61–65.Google Scholar
  68. 68.
    Landau, L. and E.M. Lifshitz. 1951. The Classical Theory of Fields. Addison Wesley, San Francisco, CA, Ch. 11 (and many other editions in many languages).Google Scholar
  69. 69.
    Lee, M.D., D. Gretz, S. Steppel and J. Weber. 1976. Gravitational Radiation Detector Observations in 1973 and 1974. Phys. Rev. D 14: 893–906.ADSCrossRefGoogle Scholar
  70. 70.
    Levi-Civita, T. 1917. Realtà fisica di alcuni spazi normali del Bianchi. Rendiconti della Reale Accademia del Lincei 26: 519–531.MATHGoogle Scholar
  71. 71.
    Lichnerowicz, A. 1955. Théories Relativistes de la Gravitation et de l’Electromagnétisme. Masson, Paris.Google Scholar
  72. 72.
    Lichnerowicz, A. and M. Tonnelat, eds. 1962. Theories Relativistes de la Gravitation (Proceedings of the 1959 Royaumont conference) CNRS, Paris.Google Scholar
  73. 73.
    Loinger, A. 2003. Non-existence of gravitational waves. The stages of the theoretical discovery (1917–2003). arXiv:physics/0312149.
  74. 74.
    Loinger, A. and T. Marsico. 2016. Email, 6 March 2016.Google Scholar
  75. 75.
    Marshall, S.A. and J. Weber. 1957a. Plane parallel plate transmission line Stark microwave spectrograph. Rev. Sci. Instrum. 28: 134–137.ADSCrossRefGoogle Scholar
  76. 76.
    Marshall, S.A. and J. Weber. 1957b. Microwave Stark effect measurement of the dipole moment and polarizability of carbonyl sulfide. Phys. Rev. 105: 1502–1506.ADSCrossRefGoogle Scholar
  77. 77.
    Menzel, D.H. 1937. Physical Processes in Gaseous Nebulae I. Astrophys. J. 85: 330–339.ADSMATHCrossRefGoogle Scholar
  78. 78.
    Misner, C.W., K.S. Thorne, and J.A. Wheeler. 1973. Gravitation. W.H. Freeman, San Francisco, CA.Google Scholar
  79. 79.
    Møller, C. 1952. The Theory of Relativity. Oxford University Press, Oxford UK.Google Scholar
  80. 80.
    Moss, G.E., L.R. Miller and R.L. Forward. 1971. Photon-noise-limited laser transducer for gravitational antenna. Appl. Opt. 10: 2495–2498.ADSCrossRefGoogle Scholar
  81. 81.
    Paczyński, B. 1971. Evolutionary Processes in Close Binary Systems. Ann. Rev. Astron. Astrophys. 9: 183–208.ADSCrossRefGoogle Scholar
  82. 82.
    Peebles, P.J.E. 2016. Robert Dicke and the naissance of experimental gravity physics, 1957–1967. Eur. Phys. J. H, Doi:10.1140/epjh/e2016-70034-0.
  83. 83.
    Peebles, P.J.E., L.A. Page and R.B. Partridge. 2009. Finding the Big Bang. Cambridge University Press, Cambridge, pp. 6 & 181.Google Scholar
  84. 84.
    Petrov, A.Z. 1954. Classification of spaces defining gravitational fields Sci. Notes Kazan State Univ. 114: 55–69.MathSciNetGoogle Scholar
  85. 85.
    Petrov, A.Z. 1962. Classification invariante des champs de gravitation. In Lichnerowicz and Tonnelat (1962), pp. 107–112.Google Scholar
  86. 86.
    Pirani, F.A.E. 1957. Invariant formulation of gravitational radiation theory. Phys. Rev. 105: 1089–1099.ADSMathSciNetMATHCrossRefGoogle Scholar
  87. 87.
    Poincaré, H. 1905. Sur la dynamique de l’électron. Comptes Rendus Hebdomadaires de l’Académie des Sciences de Paris 140: 1504–1508.MATHGoogle Scholar
  88. 88.
    Purcell, E.M. and R.V. Pound. 1951. A nuclear spin system at negative temperature. Phys. Rev. 81: 279–280.ADSCrossRefGoogle Scholar
  89. 89.
    Richard, J.P. 1976. Sensor and suspensions for a low-temperature gravitational wave antenna. Rev. Sci. Instrum. 47: 423–426.ADSCrossRefGoogle Scholar
  90. 90.
    Robinson, I. and A. Trautman. 1960. Spherical Gravitational Waves. Phys. Rev. Lett. 4: 431–432.ADSMATHCrossRefGoogle Scholar
  91. 91.
    Rosen, N. 1956. Gravitational waves. In A. Mercier and M. Kervaire, eds. Jubilee of Relativity Theory. Helvetica Physica Acta, Supplementum IV, Birkhausen Verlag, Basel, pp. 171–175.Google Scholar
  92. 92.
    Scheidegger, A.E. 1953. Gravitational motion. Rev. Mod. Phys. 25: 451–468.ADSMathSciNetMATHCrossRefGoogle Scholar
  93. 93.
    Schutz, B.F. 2003. LISA and the gravitational wave universe. In R. Bandiera et al., eds. Texas in Tuscany, XXI Symposium on Relativistic Astrophysics, World Scientific, Singapore, pp. 91–102.Google Scholar
  94. 94.
    Shaviv, G. and N. Rosen, eds. 1975. General Relativity and Gravitation: Proceedings of the Seventh International Conference (GR7), John Wiley, New York, NY.Google Scholar
  95. 95.
    Shuler, K.E. and J. Weber. 1954. A microwave investigation of the ionization of hydrogen-oxygen and acetylene-oxygen flames. J. Chem. Phys. 22: 491–502.ADSCrossRefGoogle Scholar
  96. 96.
    Thorne, K.S. 1994. Black Holes and Time Warps. W. W. Norton, New York, NY, p. 366.Google Scholar
  97. 97.
    Tobias, R.L. 2013. Email dated 7 March.Google Scholar
  98. 98.
    Trimble, V. 1988. 1987A: The greatest supernova since Kepler. Rev. Mod. Phys. 60: 859–871.ADSCrossRefGoogle Scholar
  99. 99.
    Trimble, V. 2000. Obituary of Joseph Weber. Bulletin of the American Astronomical Society 32: 1691–1693.ADSGoogle Scholar
  100. 100.
    Trimble, V. 2003. Supernovae: Ground zero and the aftermath. In R. Bandiera et al., eds. Texas in Tuscany, XXI Symposium on Relativistic Astrophysics. World Scientific, Singapore, pp. 269–284.Google Scholar
  101. 101.
    Trimble, V. 2014. Joseph Weber. In Hockey et al. (2014), pp. 2301–2303.Google Scholar
  102. 102.
    Trimble, V. 2016. Joseph Weber. In B. Wszolek and A. Kuzmica, eds. Czestochowski Kalendarz Astronomiczny 2016. Astronomica Nova, Chestochowska, Poland, pp. 171–175.Google Scholar
  103. 103.
    Trimble, V. and J. Weber. 1973. Gravitational radiation detection experiments with Disk-shaped and cylindrical antennae and the lunar surface gravimeter. In D.J. Hegyi, ed. Sixth Texas Symposium on Relativistic Astrophysics, Ann. NY Acad. Sci. 224: 93–100.ADSCrossRefGoogle Scholar
  104. 104.
    Trimble, V., W.K. Rose and J. Weber. 1973. A low-mass primary for Cygnus X-1? Monthly Notices of the Royal Astron. Soc. 162: pink pages 1–4.Google Scholar
  105. 105.
    Tyson, J.A. 1973. Gravitational radiation. In D.J. Hegyi, ed. Sixth Texas Symposium on Relativistic Astrophysics, Ann. NY Acad. Sci. 224: 74–92.ADSCrossRefGoogle Scholar
  106. 106.
    Weber, J. 1951. Pressure broadening of an ammonia inversion line for foreign gases. Phys. Rev. 83: 1058–1059.ADSCrossRefGoogle Scholar
  107. 107.
    Weber, J. 1953a. Amplification of microwave radiation by substance not in thermal equilibrium. Transactions of the IRE, PGED 3: 1–4.Google Scholar
  108. 108.
    Weber, J. 1953b. Quantum theory of a damped electrical oscillator and noise. Phys. Rev. 90: 977–982.ADSMATHCrossRefGoogle Scholar
  109. 109.
    Weber, J. 1954a. Quantum theory of a damped electrical oscillator and noise II. The radiation resistance. Phys. Rev. 94: 211–215.ADSMATHCrossRefGoogle Scholar
  110. 110.
    Weber, J. 1954b. Vacuum fluctuation noise. Phys. Rev. 94: 215–217.ADSMATHCrossRefGoogle Scholar
  111. 111.
    Weber, J. 1954c. Vacuum fluctuation noise and dissipations. Phys. Rev. 96: 556–559.ADSMATHCrossRefGoogle Scholar
  112. 112.
    Weber, J. 1955. Scattering of electromagnetic waves by wires and plates. Proc. IRE 43: 82.CrossRefGoogle Scholar
  113. 113.
    Weber, J. 1956a. Exact quantum theory solution for the damped harmonic oscillator. Phys. Rev. 101: 1619–1620.ADSMATHCrossRefGoogle Scholar
  114. 114.
    Weber, J. 1956b. Fluctuation dissipation theorem. Phys. Rev. 101: 1620–1626.ADSMathSciNetMATHCrossRefGoogle Scholar
  115. 115.
    Weber, J. 1957. Maser noise considerations. Phys. Rev. 106: 537–541.ADSCrossRefGoogle Scholar
  116. 116.
    Weber, J. 1959a. Gravitational Waves. First Prize Essay, Gravity Research Foundation, New Boston, NH.Google Scholar
  117. 117.
    Weber, J. 1959b. Masers. Rev. Mod. Phys. 31: 681–710.ADSCrossRefGoogle Scholar
  118. 118.
    Weber, J. 1960a. Detection and generation of gravitational waves. Phys. Rev. 117: 306–313.ADSMathSciNetMATHCrossRefGoogle Scholar
  119. 119.
    Weber, J. 1960b. Phase as a dynamical variable in quantum mechanics. In Proc. of Rochester Conference on Coherence of Electromagnetic Radiation.Google Scholar
  120. 120.
    Weber, J. 1960c. Coherence properties of electromagnetic radiation. In Proceedings of Johns Hopkins University Conf. on Electronic Countermeasure.Google Scholar
  121. 121.
    Weber, J. 1960d. Some aspects on noise in low noise receivers. In Proc. of MIT Symposium on Low noise Receivers.Google Scholar
  122. 122.
    Weber, J. 1961a. General Relativity and Gravitational Waves. Interscience Publ. NY.Google Scholar
  123. 123.
    Weber, J. 1961b. Quantum electronics and new gravitation experiments. In Proc. of 2nd International Conf. on Quantum Electronics.Google Scholar
  124. 124.
    Weber, J. 1962a. On the possibility of detection and generation of gravitational waves. In Lichnerowicz and Tonnelat (1962), pp. 441–450.Google Scholar
  125. 125.
    Weber, J. 1962b. Theory of methods for measurement and production of gravitational waves. In C. Møller, ed. Evidence for Gravitational Theories (Varenna 1961). Academic Press, pp. 116–140.Google Scholar
  126. 126.
    Weber, J. 1963a. Remarks on gravitational experiments. Nuovo Cimento 29: 930–934.CrossRefGoogle Scholar
  127. 127.
    Weber, J. 1963b. Gravitation and light. In H.Y. Chiu and W.F. Hoffman, eds. Gravitation, W.A. Benjamin Inc. NY.Google Scholar
  128. 128.
    Weber, J. 1963c. Gravitational Waves. In H.Y. Chiu and W.F. Hoffman, eds. Gravitation, W.A. Benjamin Inc. NY.Google Scholar
  129. 129.
    Weber, J. 1964a. Noise considerations in gravitational experiments. Nuovo Cimento 30: 462–464.CrossRefGoogle Scholar
  130. 130.
    Weber, J. 1964b. Gravitational radiation experiments. In C. DeWitt and B. DeWitt, eds. Relativity Groups and Topology (Les Houches 1963) Gordon & Breach, New York, NY, pp. 865–882.Google Scholar
  131. 131.
    Weber, J. 1964c. Gravitation and Light. In H.Y. Chiu and W.F. Hoffmann, Gravitation and Relativity, W.A. Benjamin, pp. 90–105.Google Scholar
  132. 132.
    Weber, J. 1965a. Introductory Remarks: Lasers and free electron amplifiers. Annals of the NY Acad. of Sciences 122: 571–578.ADSCrossRefGoogle Scholar
  133. 133.
    Weber, J. 1965b. Some notes on masers and lasers. Proc. NY Acad. Sci. 22: 832.ADSGoogle Scholar
  134. 134.
    Weber, J. 1966a. Gravitational shielding and absorption. Phys. Rev. 146: 935–937.ADSCrossRefGoogle Scholar
  135. 135.
    Weber, J. 1966b. Observation of the thermal fluctuations of a gravitational wave detector. Phys. Rev. Lett. 17: 1228–1230.ADSCrossRefGoogle Scholar
  136. 136.
    Weber, J. 1966c. Gravitational experiments on the lunar surface, Conference Document published as Weber 1967b.Google Scholar
  137. 137.
    Weber, J. 1967a. Gravitational radiation. Phys. Rev. Lett. 18: 498–501.ADSCrossRefGoogle Scholar
  138. 138.
    Weber, J. 1967b. Lunar gravity investigations. In. E. Burgess, ed., Physics of the Moon, Advances in Astronautical Sciences 13, p. 199Google Scholar
  139. 139.
    Weber, J. 1968a. Gravitational waves, Physics Today 21: 34–39.CrossRefGoogle Scholar
  140. 140.
    Weber, J. 1968b. Gravitational radiation from the pulsars. Phys. Rev. Lett. 21: 295–296.ADSCrossRefGoogle Scholar
  141. 141.
    Weber, J. 1968c. Gravitational-wave-detector events. Phys. Rev. Lett. 20: 1307–1308.ADSCrossRefGoogle Scholar
  142. 142.
    Weber, J. 1969a, ed. Masers: A Collection of Reprints with Commentary, Vol. 9. Gordon and Breach, New York, NY.Google Scholar
  143. 143.
    Weber, J. 1969b, ed. Lasers: A Collection of Reprints with Commentary, Vol. 10A. Gordon and Breach, New York, NY.Google Scholar
  144. 144.
    Weber, J. 1969c. Evidence for the discovery of gravitational radiation. Phys. Rev. Lett. 22: 1320–1324.ADSCrossRefGoogle Scholar
  145. 145.
    Weber, J. 1970a. Gravitational radiation experiments. Phys. Rev. Lett. 24: 276–279.ADSCrossRefGoogle Scholar
  146. 146.
    Weber, J. 1970b. Anistropy and polarization in the gravitational radiation experiments. Phys. Rev. Lett. 25: 180–184.ADSCrossRefGoogle Scholar
  147. 147.
    Weber, J. 1970c. The new gravitational radiation detectors. Lettere al Nuovo Cimento 4: 653–658.CrossRefGoogle Scholar
  148. 148.
    Weber, J. 1971a. Gravitational Radiation Experiments. In C.G. Kuper and A. Peres, eds. Relativity and Gravitation, Gordon and Breach, New York, NY, pp. 309–322 (proceedings of a seminar held in Haifa honoring Nathan Rosen).Google Scholar
  149. 149.
    Weber, J. 1971b. The detection of gravitational waves. Scientific American 224: 22–29.ADSCrossRefGoogle Scholar
  150. 150.
    Weber, J. 1971c. Disc-cylinder Argonne-Maryland gravitational radiation experiments. Il Nuovo Cimento 4B: 197.ADSCrossRefGoogle Scholar
  151. 151.
    Weber, J. 1971d. Experimental test of symmetry of gravitational radiation. Phys. Lett. A 34: 271–273.ADSCrossRefGoogle Scholar
  152. 152.
    Weber, J. 1972a. Advances in gravitational radiation detection. General Relativity and Gravitation 3: 59.ADSCrossRefGoogle Scholar
  153. 153.
    Weber, J. 1972b. Computer analyses of gravitational radiation detection coincidences. Nature 240: 28.ADSCrossRefGoogle Scholar
  154. 154.
    Weber, J. 1977. Gravitational radiation detector observations in 1973 and 1974. Nature 266: 243.ADSCrossRefGoogle Scholar
  155. 155.
    Weber, J. 1980. The Search for Gravitational Radiation. In A. Held, ed. General Relativity and Gravitation, Vol. 2, Plenum Publishing Co., New York, pp. 435–467.Google Scholar
  156. 156.
    Weber, J. 1981a. Exchange of Energy with Large Numbers of Particles. Phys. Rev. A 23: 761–762.ADSCrossRefGoogle Scholar
  157. 157.
    Weber, J. 1981b. New method for increase of interaction of gravitational radiation with an antenna. Phys. Lett. A 81: 542–544.ADSCrossRefGoogle Scholar
  158. 158.
    Weber, J. 1984. Gravitons, neutrinos and antineutrinos. Foundations of Physics 14: 1185–1209.ADSCrossRefGoogle Scholar
  159. 159.
    Weber, J. 1985a. Gravitational wave experiments. In B. Korsonoglu et al.  eds. High Energy Physics (in honor of P.A.M. Dirac in his Eightieth Year), Plenum Publishing Co., New York, pp. 199–210.Google Scholar
  160. 160.
    Weber, J. 1985b. Method for observation of neutrinos and antineutrinos. Phys. Rev. C 31: 1468–1475.ADSCrossRefGoogle Scholar
  161. 161.
    Weber, J. 1986a. Gravitational antennas and the search for gravitational radiation. In J. Weber and T. M. Karade, eds. Gravitational Radiation and Relativity: Proceeding of the Sir Arthur Eddington Centenary Symposium, Vol. 3, World Scientific, Singapore, pp. 1–77.Google Scholar
  162. 162.
    Weber, J. 1986b. Coherent scattering of neutrinos and antineutrinos by quarks in a crystal. American Inst. Phys. Proc. 150: 1038.Google Scholar
  163. 163.
    Weber, J. 1988a. Apparent observation of abnormally large coherent scattering cross section using KeV and MeV energy antineutrinos and solar neutrinos. Phys. Rev. D 38: 32–39.ADSCrossRefGoogle Scholar
  164. 164.
    Weber, J. 1988b. Neutrinos, gravitons, metrology and gravitational radiation. In V. De Sabbata and V.N. Melnikov, eds. Gravitational Measurements, Fundamental Metrology, and Constants. NATO ASI Series C230, Kluwer, Dordrecht, pp. 467–500.Google Scholar
  165. 165.
    Weber, J. 1989. Gravitational antenna bandwidths and cross sections. In B.F. Schutz, ed. Gravitational Wave Data Analysis, NATO ASI C253, Kluwer, Dordrecht, pp. 195–200.Google Scholar
  166. 166.
    Weber, J. 1990. Gravitational radiation antennas: history, observations, and lunar surface operations. In A.E. Potter and T.L. Wilson, eds. Physics and Astrophysics from a Lunar Base, AIP Conf. Proc. 202: 159–202.ADSCrossRefGoogle Scholar
  167. 167.
    Weber, J. 1991a. Velocity of propagation of gravitational radiation, mass of the graviton, range of the gravitational force, and the cosmological constant. In A. Zichichi et al., eds. Gravitation and Modern Cosmology: the Cosmological Constant Problem (in honor of 75th birthday of Peter Bergmann) Plenum Publishing Co., New York, pp. 17–20.Google Scholar
  168. 168.
    Weber, J. 1991b. New methods for neutrino detection, and solar neutrino interactions with a single-crystal earth core. In S. Flodmark, ed. Proc. of Conf. on New Approaches in Geomagnetism and the Earth’s Rotation. World Scientific, Singapore, pp. 199–220.Google Scholar
  169. 169.
    Weber, J. 1992a. Supernova 1987A; gravitational-wave antenna observations, cross-sections, correlations with six elementary particle detectors, and resolution of past controversies. In A.I. Janis and J.R. Porter, eds. Recent Advances in General Relativity, Birkhauser, Boston, pp. 230–240.Google Scholar
  170. 170.
    Weber, J. 1992b. Gravitational radiation antenna observations, theory of sensitivity of bar and interferometer systems and resolution of past controversies. In N. Sanchez and A. Zichichi, eds. Current Topics in Astrofundamental Physics, World Scientific, Singapore, pp. 508–534.Google Scholar
  171. 171.
    Weber, J. 1992c. Neutrinos and antineutrinos in astronomy and astrophysics. In N. Sanchez and A. Zichichi as above, pp. 560–578.Google Scholar
  172. 172.
    Weber, J. 1993. Gravitational experiments at supercolliders. In W. Schroeder, ed. The Earth and the Universe. Festschrift in honour of Hans-Juergen Trader. Science Editions, Bremen, pp. 439–451.Google Scholar
  173. 173.
    Weber, J. 1994. Supercollider gravitational experiments. In V. de Sabbata and Ho Tso-Hsuiu, eds. Cosmology and Particle Physics, NATO ASI C427, Kluwer, Dordrecht, pp. 271–278.Google Scholar
  174. 174.
    Weber, J. 1998. Gravitational radiation antenna backgrounds and cross sections. Physics Essays 11: 593–599.ADSCrossRefGoogle Scholar
  175. 175.
    Weber, J. 1999. Correlated gamma ray trigger times with gravitational radiation detector pulses from the bursting pulsar J1744-28. Physics Essays 12: 781–784.ADSCrossRefGoogle Scholar
  176. 176.
    Weber, J. 2000. Gravitational radiation-antenna observations. Submitted, accepted, proof-read. If published, in a journal not covered by ADS.Google Scholar
  177. 177.
    Weber, J. and G. Hinds. 1962. Interaction of Photons and Gravitons. Phys. Rev. 128: 2414–2421.ADSMathSciNetMATHCrossRefGoogle Scholar
  178. 178.
    Weber, J. and K.J. Laidler. 1950. Variations of rate of desorption with extent of surface coverage. J. Chem. Phys. 18: 1416–1418.ADSCrossRefGoogle Scholar
  179. 179.
    Weber, J. and K.J. Laidler. 1951a. Kinetics of the ammonia-deuterium exchange by a microwave method. J. Chem. Phys. 19: 381–382.ADSCrossRefGoogle Scholar
  180. 180.
    Weber, J. and K.J. Laidler. 1951b. Microwave spectroscopic investigations of the kinetics of the heterogeneous ammonia deuterium exchange. J. Chem. Phys. 19: 1089–1096.ADSCrossRefGoogle Scholar
  181. 181.
    Weber, J. and J. Larson. 1966. Operation of LaCoste Romberg Gravimeter at sensitivity approaching the thermal fluctuation limits. J. Geophys. Res. 71: 6005–6009.ADSCrossRefGoogle Scholar
  182. 182.
    Weber, J. and K.E. Shuler. 1954. A microwave investigation of the ionization of hydrogen-oxygen and acetylene-oxygen flames. J. Chem. Phys. 22: 491.ADSCrossRefGoogle Scholar
  183. 183.
    Weber, J. and J.A. Wheeler. 1957. Reality of the cylindrical gravitational waves of Einstein and Rosen. Rev. Mod. Phys. 29: 509–515.ADSMathSciNetMATHCrossRefGoogle Scholar
  184. 184.
    Weber, J. and V. Trimble. 1973. On the response of a gravitational radiation detector to magnetic field fluctuations. Phys. Lett. 45A: 353–354.ADSCrossRefGoogle Scholar
  185. 185.
    Weber, J., V.H. Hughes, P. Kafka, R.W.P. Drever, C.W. Misner and J.A. Tyson. 1973. General discussion on gravitational waves. Ann. NY Acad. Sci. 224: 100–107.Google Scholar
  186. 186.
    Weber, J., M. Lee, D.J. Gretz, G. Rydbeck, V.L. Trimble and S. Steppel. 1977. New gravitational radiation experiments. Phys. Rev. Lett. 31: 779–783.ADSCrossRefGoogle Scholar
  187. 187.
    Weber, J., V. Ferrari, G. Pizzella and M. Lee. 1982. Search for correlations between the University of Maryland and the University of Rome gravitational radiation antennas. Phys. Rev. D 25: 2471.ADSCrossRefGoogle Scholar
  188. 188.
    Weber, J. and B. Radak. 1996. Search for correlations of gamma ray bursts with gravitational radiation antenna pulses. Nuovo Cimento B 111: 687–692.ADSCrossRefGoogle Scholar
  189. 189.
    Weiss, R. 1972. Lincoln Research Laboratory of Electronics (MIT) Quarterly Report No. 105, 54076.Google Scholar
  190. 190.
    Weyl, H. 1922. Space-Time Matter. Methuen, London.Google Scholar
  191. 191.
    Weyl, H. 1944. How far can one get with a linear field theory of gravitation in flat space-time? Am. J. Math. 66: 591–604.MathSciNetMATHCrossRefGoogle Scholar
  192. 192.
    Wheeler, J.A. and R.P. Feynman. 1948. Interaction with the absorber as the mechanism of radiation. Rev. Mod. Phys. 17: 157–181.ADSCrossRefGoogle Scholar
  193. 193.
    Zeldovich, Ya.B. and O.H. Guseinov. 1966. Collapsed stars in binaries. Astrophysical Journal 144: 840–842.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of CaliforniaIrvineUSA
  2. 2.Queen Jadwiga ObservatoryRzepiennikPoland

Personalised recommendations