The European Physical Journal H

, Volume 42, Issue 1, pp 23–61 | Cite as

Léon Rosenfeld’s general theory of constrained Hamiltonian dynamics

Open Access
Article

Abstract

This commentary reflects on the 1930 general theory of Léon Rosenfeld dealing with phase-space constraints. We start with a short biography of Rosenfeld and his motivation for this article in the context of ideas pursued by W. Pauli, F. Klein, E. Noether. We then comment on Rosenfeld’s General Theory dealing with symmetries and constraints, symmetry generators, conservation laws and the construction of a Hamiltonian in the case of phase-space constraints. It is remarkable that he was able to derive expressions for all phase space symmetry generators without making explicit reference to the generator of time evolution. In his Applications, Rosenfeld treated the general relativistic example of Einstein-Maxwell-Dirac theory. We show, that although Rosenfeld refrained from fully applying his general findings to this example, he could have obtained the Hamiltonian. Many of Rosenfeld’s discoveries were re-developed or re-discovered by others two decades later, yet as we show there remain additional firsts that are still not recognized in the community.

References

  1. 1.
    L. Rosenfeld, Zur Quantelung der Wellenfelder. Annalen der Physik 397: 113–152 (1930).ADSCrossRefMATHGoogle Scholar
  2. 2.
    L. Rosenfeld, La théorie quantique des champs. Annales de l’Institut Henri Poincaré 2: 25–91 (1932).MATHGoogle Scholar
  3. 3.
    A. Skaar Jacobsen. Léon Rosenfeld. Physics, Philosophy, and Politics in the Twentieth Century (World Scientific, 2012).Google Scholar
  4. 4.
    D.C. Salisbury, Léon Rosenfeld and the challenge of the vanishing momentum in quantum electrodynamics. Studies in History and Philos. Mod. Phys. 40: 363–373 (2009).ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    P.G. Bergmann, Non-linear field theories. Phys. Rev. 75: 680–685 (1949).ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    P.G. Bergmann, J.H.M. Brunings, Non-linear field theories II. Canonical equations and quantization. Rev. Mod. Phys. 21: 480–487 (1949).ADSCrossRefMATHGoogle Scholar
  7. 7.
    P.A.M. Dirac, Generalized Hamiltonian dynamics. Canadian J. Math. 2: 129–148 (1950).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    P.A.M. Dirac, The Hamiltonian form of field dynamics. Canadian J. Math. 3: 1–23 (1951).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    P.G. Bergmann, R. Penfield, R. Schiller, H. Zatzkis, The Hamiltonian of the general theory of relativity with electromagnetic field. Phys. Rev. 80: 81–88 (1950).ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    J.L. Anderson, P.G. Bergmann, Constraints in covariant field theories. Phys. Rev. 83: 1018–1025 (1951).ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    J. Heller, P.G. Bergmann, A canonical field theory with spinors. Phys. Rev. 84(4): 665–670 (1951).ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Pe.G. Bergmann, R. Schiller, Classical and quantum field theories in the Lagrangian formalism. Phys. Rev. 89: 4–16 (1953).ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    R. Arnowitt, S. Deser, C. Misner, The dynamics of general relativity. In L. Witten, editor, Gravitation: an introduction to current research (1962), pp. 227–264.Google Scholar
  14. 14.
    R. Utiyama, On the interaction of mesons with the gravitational field. I. Progress of Theoretical Physics 2: 38–62 (1947).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    E. Noether, Invariante Variationsprobleme, Nachrichten von der Königl. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1918).Google Scholar
  16. 16.
    F. Klein, Über die Differentialgesetze für Erhaltung von Impuls und Energie in der Einsteinschen Gravitationstheorie. Nachrichten von der Königl. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1918), pp. 171–189.Google Scholar
  17. 17.
    A. Einstein, Der Energiesatz in der allgemeinen Relativitätstheorie, Königlich Preussische Akademie der Wissenschaft. Sitzungsberichte (Berlin) (1918), pp. 448–449.Google Scholar
  18. 18.
    W. Pauli, Relativitätstheorie (Verlag und Druck von B.G. Teubner, 1921).Google Scholar
  19. 19.
    W. Pauli, Relativitätstheorie: Neu herausgegeben und kommentiert von Domenico Giulini (Springer, 2000).Google Scholar
  20. 20.
    K. von Meyenn, Wolfgang Pauli (Scientific Correspondence With Bohr, Einstein, Heisenberg, a.O./Volume IV : 1955-1956) (Springer, 2001), Vol. 4.Google Scholar
  21. 21.
    C.P. Enz, No Time to be Brief: A scientific biography of Wolfgang Pauli (Oxford University Press, 2002).Google Scholar
  22. 22.
    P.G. Bergmann, Covariant quantization of nonlinear field theories. Proc. Int. Congress Math. 1: 651 (1950).Google Scholar
  23. 23.
    E.H. Moore, On the reciprical of the general algebraic matrix. Bulletin of the American Mathematical Society 26: 394–395 (1920).Google Scholar
  24. 24.
    R. Penrose, A generalized inverse for matrices. Proc. Cambridge Philos. Soc. 51: 406–413 (1955).ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    H. Goldstein, Classical Mechanics (Addison-Wesley, 1965).Google Scholar
  26. 26.
    R. Schiller, Constraints and equations of motion in covariant field theories. Ph.D. thesis, Syracuse University, 1952.Google Scholar
  27. 27.
    E. Bessel-Hagen, Über die Erhaltungssätze der Elektrodynamik, Math. Ann. 84: 258–276 (1921).MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Y. Kosmann-Schwarzbach, The Noether Theorems (Springer, 2011).Google Scholar
  29. 29.
    L. Castellani, Symmetries in constrained hamiltonian systems. Ann. Phys. 143: 357–371 (1982).ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    V.A. Fock, Geometrisierung der Diracschen Theorie des Elektrons. Zeitschrift für Physik 57: 261–277 (1929).ADSCrossRefMATHGoogle Scholar
  31. 31.
    H. Weyl, Elektron und Gravitation. I. Zeitschrift für Physik 56: 330–352 (1929).ADSCrossRefMATHGoogle Scholar
  32. 32.
    E. Scholz, Local spinor structures in V. Fock’s and H. Weyl’s work on the Dirac equation. In J. Kouneiher, D. Flament, P. Nabonnand, J.-J. Szczeciniarz, editors, Géométrie au XXe siècle : histoire et horizons (2005), pp. 284–301.Google Scholar
  33. 33.
    N. Straumann, Gauge principle and QED. Acta Physica Polonica B 37: 575–593 (2006).ADSGoogle Scholar
  34. 34.
    W. Heisenberg, W. Pauli, Zur Quantendynamik der Wellenfelder. Zeitschrift für Physik 56: 1–61 (1929).ADSCrossRefMATHGoogle Scholar
  35. 35.
    K. Sundermeyer, Symmetries in Fundamental Physics, Vol. 176 of Fundamental Theories of Physics (Springer, 2014).Google Scholar
  36. 36.
    J. Pons, D. Salisbury, L. Shepley, Gauge transformations in Einstein-Yang-Mills theories. J. Math. Phys. 41(8): 5557–5571 (2000).ADSMathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    P.A.M. Dirac, The theory of gravitation in Hamiltonian form. Proc. Roy. Soc. London A 246: 333–343 (1958).ADSMathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    P.G. Bergmann, A. Komar, The coordinate group symmetry of general relativity. Int. J. Theor. Phys. 5: 15–28 (1972).CrossRefGoogle Scholar
  39. 39.
    D. Salisbury, K. Sundermeyer, The realization in phase space of general coordinate transformations. Phys. Rev. D 27: 740–756 (1983).ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    J. Pons, D. Salisbury, L. Shepley, Gauge transformations in the Lagrangian and Hamiltonian formalisms of generally covariant theories. Phys. Rev. D 55: 658–668 (1997).ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    P.G. Bergmann, The fading world point. In P.G. Bergmann, V. De Sabbata, editors, Cosmology and Gravitation: Spin, Torsion, Rotation, and Supergravity (1979), pp. 173–176.Google Scholar
  42. 42.
    J.E. Nelson, C. Teitelboim, Hamiltonian for the Einstein-Dirac field. Phys. Lett. B 69: 81–84 (1977).ADSCrossRefGoogle Scholar
  43. 43.
    J.E. Nelson, C. Teitelboim, Hamiltonian formulation of the theory of intracting gravitational and electron fields. Ann. Phys. 116: 86–104 (1978).ADSCrossRefGoogle Scholar
  44. 44.
    A. Hanson, T. Regge, C. Teitelboim, Constrained Hamiltonian Systems (Accademia Nazionale dei Lincei, 1976).Google Scholar
  45. 45.
    M. Henneaux, C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, 1992).Google Scholar
  46. 46.
    K. Sundermeyer, Constrained Dynamics – with Applications To Yang-Mills Theory, General Relativity, Classical Spin, Dual String Model. Number 169 in Lecture Notes in Physics (Springer, 1982).Google Scholar
  47. 47.
    P. Dirac, A new classical theory of electrons. Proc. Roy. Soc. London 209: 291–296 (1951).ADSMathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    J. Goldberg, Strong conservation laws and equations of motion in covariant field theories. Phys. Rev. 89: 263–272 (1953).ADSMathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    R. Utiyama, Theory of invariant variation and the generalized canonical dynamics. Progress of Theoretical Physics (Supplement) 9: 19–44 (1959).ADSCrossRefMATHGoogle Scholar
  50. 50.
    A. Trautman, Noether equations and conservation laws. Commun. Math. Phys. 6: 248–261 (1967).ADSMathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    B.M. Barbashov, V.V. Nesterenko, Continuous symmetries in field theory. Fortschritt der Physik 31: 535–567 (1983).ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    L. Lusanna, An enlarged phase space for finite-dimensional constrained systems, unifying their Lagrangian, phase- and velocity-space descriptions. Phys. Rep. 185: 1–54 (1990).ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    L. Lusanna, The second Noether theorem as the basis of the theory of singular Lagrangians and Hamiltonians constraints. Rivista Nuovo Cimento 14: 1–75 (1991).MathSciNetCrossRefGoogle Scholar
  54. 54.
    B. Julia, S. Silva, Currents and superpotentials in classical gauge-invariant theories: I. Local results with applications to perfect fluids and general relativity. Classical and Quantum Gravity 15: 2173–2215 (1998).ADSMathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    B. Julia, S. Silva, Currents and superpotentials in classical gauge-invariant theories: II. Global aspects and the example of affine gravity. Classical and Quantum Gravity 17: 4733–4743 (2000).ADSMathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    K. Brading, H.R. Brown, Symmetries in Physics, chapter Symmetries and Noether’s theorems (Cambridge University Press, 2003), pp. 89–109.Google Scholar
  57. 57.
    K.A. Brading, Which symmetry? Noether, Weyl, and conservation of electric charge, Studies in History and Philos. Mod. Phys. 33: 2–22 (2002).ADSMathSciNetMATHGoogle Scholar
  58. 58.
    A.N. Petrov, R.R. Lompay, Covariantized noether identities and conservation laws for perturbations in metric theories of gravity. General Relativity and Gravitation 45: 545–579 (2013).ADSMathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    P.A.M. Dirac, Lectures on Quantum Mechanics (Yeshiva University Press, 1964).Google Scholar
  60. 60.
    N. Mukunda, Symmetries and constraints in generalized Hamiltonian dynamics. Ann. Phys. 99: 408–433 (1976).ADSMathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    N. Mukunda, Generators for symmetry transformations for constrained Hamiltonian systems. Physica Scripta 21: 783–791 (1980).ADSMathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    J. Pons, D. Salisbury, L. Shepley, The gauge group and the reality conditions in ashtekar’s formulation of general relativity. Phys. Rev. D 62: 064026–064040 (2000).ADSMathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    B.S. DeWitt, C. DeWitt-Morette, The quantum theory of interacting gravitational and spinor fields. Phys. Rev. 87: 116–122 (1952).ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    F. Cianfrani, M. Lulli, G. Montani, Solution of the noncanonicity puzzle in general relativity: A new Hamiltonian formulation. Phys. Lett. B 710: 703–709 (2012).ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    C. Batlle, J. Gomis, J.M. Pons, N. Roman-Roy, Equivalence between the Lagrangian and Hamiltonian formalism for constrained systems. J. Math. Phys. 27: 2953–2962 (1986).ADSMathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    J.M. Pons, On Dirac’s incomplete analysis of gauge transformations. Studies in History and Philos. Mod. Phys. 36: 491–518 (2005).ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Open access funding provided by Max Planck Society.

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Max Planck Institute for the History of ScienceBerlinGermany
  2. 2.Austin CollegeShermanUSA
  3. 3.Freie Universität Berlin, Fachbereich PhysikBerlinGermany

Personalised recommendations