Advertisement

The European Physical Journal H

, Volume 42, Issue 2, pp 177–259 | Cite as

Robert Dicke and the naissance of experimental gravity physics, 1957–1967

  • Phillip James Edwin Peebles
Open Access
Article
Part of the following topical collections:
  1. The Renaissance of Einstein’s Theory of Gravitation

Abstract

The experimental study of gravity became much more active in the late 1950s, a change pronounced enough be termed the birth, or naissance, of experimental gravity physics. I present a review of developments in this subject since 1915, through the broad range of new approaches that commenced in the late 1950s, and up to the transition of experimental gravity physics to what might be termed a normal and accepted part of physical science in the late 1960s. This review shows the importance of advances in technology, here as in all branches of natural science. The role of contingency is illustrated by Robert Dicke’s decision in the mid-1950s to change directions in mid-career, to lead a research group dedicated to the experimental study of gravity. The review also shows the power of nonempirical evidence. Some in the 1950s felt that general relativity theory is so logically sound as to be scarcely worth the testing. But Dicke and others argued that a poorly tested theory is only that, and that other nonempirical arguments, based on Mach’s Principle and Dirac’s Large Numbers hypothesis, suggested it would be worth looking for a better theory of gravity. I conclude by offering lessons from this history, some peculiar to the study of gravity physics during the naissance, some of more general relevance. The central lesson, which is familiar but not always well advertised, is that physical theories can be empirically established, sometimes with surprising results.

References

  1. 1.
    Adams, W.S. 1925. The relativity displacement of the spectral lines in the companion of Sirius. The Observatory 48: 337-342ADSGoogle Scholar
  2. 2.
    Adelberger, E.G. 2015. Private communicationGoogle Scholar
  3. 3.
    Adelberger, E.G., J.H. Gundlach, B.R. Heckel, S. Hoedl and S. Schlamminger. 2009. Torsion balance experiments: A low-energy frontier of particle physics. Progress Particle Nucl. Phys. 62: 102-134ADSCrossRefGoogle Scholar
  4. 4.
    Ageno, M. and E. Alamdi. 1966. Experimental Search for a Possible Change of the β Decay Constant with Centrifugal Force. Atti Della Accademia Nazionale Dei Lincei Serie 8 8: 35ppGoogle Scholar
  5. 5.
    Aglietta, M., G. Badino, G. Bologna, et al. 1989. Analysis of the data recorded by the Mont Blanc neutrino detector and by the Maryland and Rome gravitational-wave detectors during SN 1987 A. Nuovo Cimento C Geophysics Space Physics C 12: 75-101ADSCrossRefGoogle Scholar
  6. 6.
    Aguiar, O.D. 2011. Past, present and future of the Resonant-Mass gravitational wave detectors. Res. Astron. Astrophys. 11: 1-42ADSCrossRefGoogle Scholar
  7. 7.
    Alam, S., F.D. Albareti, C. Allende Prieto, et al. 2015. The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III. Astrophys. J. Suppl. 219: 12, 27 pp.ADSCrossRefGoogle Scholar
  8. 8.
    Albareti, F.D., J. Comparat, C.M. Gutiérrez, et al. 2015. Constraint on the time variation of the fine-structure constant with the SDSS-III/BOSS DR12 quasar sample. Month. Not. Roy. Astron. Soc. 452: 4153-4168ADSCrossRefGoogle Scholar
  9. 9.
    Alcock, C., R.A. Allsman, D.R. Alves, et al. 2000. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. Astrophys. J. 542: 281-307ADSCrossRefGoogle Scholar
  10. 10.
    Alley, C.O., Jr. 1962. Optical Pumping and Optical Detection Involving Microwave and Radio Frequency Coherence Effects. Ph.D. Thesis, Princeton UniversityGoogle Scholar
  11. 11.
    Alley, C.O. 1972. Story of the Development of the Apollo 11 Laser Ranging Retro-Reflector Experiment: One Researcher’s Personal Account. Adventures in Experimental Physics Ed. B. Maglich, World Science Communications, Princeton N.J. pp. 132-156Google Scholar
  12. 12.
    Alley, C.O., P.L. Bender, R.H. Dicke, et al. 1965. Optical Radar Using a Corner Reflector on the Moon. J. Geophys. Res. 70: 2267-2269ADSCrossRefGoogle Scholar
  13. 13.
    Alpher, R.A. 1948. On the Origin and Relative Abundance of the Elements. Ph.D. thesis, The George Washington UniversityGoogle Scholar
  14. 14.
    Alpher, R.A. and R. Herman. 1948. Evolution of the Universe. Nature 162: 774-775ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Alpher, R.A., J.W. Follin and R.C. Herman. 1953. Physical Conditions in the Initial Stages of the Expanding Universe. Phys. Rev. 92: 1347-1361ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Arnowitt, R., S. Deser and C.W. Misner. 1960. Finite Self-Energy of Classical Point Particles. Phys. Rev. Lett. 4: 375-377ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Baade, W. 1956. The Period-Luminosity Relation of the Cepheids. Publications of the Astronomical Society of the Pacific 68: 5-16ADSCrossRefGoogle Scholar
  18. 18.
    Babcock, H.W. 1939. The rotation of the Andromeda Nebula. Lick Observatory Bulletin 19: 41-51ADSCrossRefGoogle Scholar
  19. 19.
    Bahcall, N.A. and R. Cen. 1992. Astrophys. J. Lett. 398: L81-L84ADSCrossRefGoogle Scholar
  20. 20.
    Bahcall, N.A. and A. Kulier. 2014. Tracing mass and light in the Universe: where is the dark matter? Month. Not. Roy. Astron. Soc. 439: 2505-2514ADSCrossRefGoogle Scholar
  21. 21.
    Bai, Y., J. Salvado and B.A. Stefanek. 2015. Cosmological constraints on the gravitational interactions of matter and dark matter. J. Cosmology Astroparticle Phys. issue 10, article id. 029, 22 p.Google Scholar
  22. 22.
    Barbour, J.B. and H. Pfister. 1995. Mach’s Principle: From Newton’s Bucket to Quantum Gravity. Birkhäuser, BostonGoogle Scholar
  23. 23.
    Barstow, M.A., H.E. Bond, J.B. Holberg, et al. 2005. Hubble Space Telescope spectroscopy of the Balmer lines in Sirius B. Month. Not. Roy. Astron. Soc. 362: 1134-1142ADSCrossRefGoogle Scholar
  24. 24.
    Bartlett, D.F. and D. van Buren. 1986. Equivalence of active and passive gravitational mass using the moon. Phys. Rev. Lett. 57: 21-24ADSCrossRefGoogle Scholar
  25. 25.
    Beltran-Lopez, V. 1962. Part I. Microwave Zeeman Spectrum of Atomic Chlorine. Part II. Measurements on Anisotropy of Inertial Mass. Ph.D. Thesis, Yale UniversityGoogle Scholar
  26. 26.
    Bender, P.L. 2015. Private communicationGoogle Scholar
  27. 27.
    Berger, J. 2016. Private communicationGoogle Scholar
  28. 28.
    Bertotti, B., D. Brill and R. Krotkov. 1962. Experiments on Gravitation. In Gravitation: An Introduction to Current Research, edited by L. Witten, Wiley, New York, pp. 1-48Google Scholar
  29. 29.
    Bertotti, B., L. Iess and P. Tortora. 2003. A test of general relativity using radio links with the Cassini spacecraft. Nature 425: 374-376ADSCrossRefGoogle Scholar
  30. 30.
    BICEP2 Collaboration, P.A.R. Ade, R.W. Aikin, et al. 2014. Detection of B-Mode Polarization at Degree Angular Scales by BICEP2. Phys. Rev. Lett. 112: 241101, 25pp.ADSCrossRefGoogle Scholar
  31. 31.
    Blatt, J.M. and V.F. Weisskopf. 1952. Theoretical Nuclear Physics. Wiley, New YorkGoogle Scholar
  32. 32.
    Block, B. and R.D. Moore. 1966. Measurements in the Earth mode frequency range by an electrostatic sensing and feedback gravimeter. J. Geophys. Res. 71: 4361-4375ADSCrossRefGoogle Scholar
  33. 33.
    Blum, A., R. Lalli and J. Renn. 2015. The Reinvention of General Relativity: A Historiographical Framework for Assessing One Hundred Years of Curved Space-time. Isis 106: 598-620MathSciNetCrossRefGoogle Scholar
  34. 34.
    Bolton, C.T. 1972. Identification of Cygnus X-1 with HDE 226868. Nature 235: 271-273ADSCrossRefGoogle Scholar
  35. 35.
    Bondi, H. 1952. Cosmology. Cambridge, Cambridge University PressGoogle Scholar
  36. 36.
    Bondi, H. 1957. Negative Mass in General Relativity. Rev. Mod. Phys. 29: 423-428ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Bondi, H. 1960. Cosmology. Cambridge, Cambridge University Press, second editionGoogle Scholar
  38. 38.
    Bondi, H. 1962. On the physical characteristics of gravitational waves. In Lichnerowicz and Tonnelat (1962), pp. 129-125Google Scholar
  39. 39.
    Bondi, H. and T. Gold. 1948. The Steady-State Theory of the Expanding Universe. Month. Not. Roy. Astron. Soc. 108: 252-270ADSzbMATHCrossRefGoogle Scholar
  40. 40.
    Botermann, B., D. Bing, C. Geppert, et al. 2014. Test of Time Dilation Using Stored Li+ Ions as Clocks at Relativistic Speed. Phys. Rev. Lett. 113: 120405, 5 p.ADSCrossRefGoogle Scholar
  41. 41.
    Boughn, S.P., S.J. Vanhook and C.M. O’Neill. 1990. Observational limits on a millihertz stochastic background of gravitational radiation. Astrophys. J. 354: 406-410ADSCrossRefGoogle Scholar
  42. 42.
    Bowyer, S., E.T. Byram, T.A. Chubb and H. Friedman. 1965. Cosmic X-ray Sources. Science 147: 394-398ADSCrossRefGoogle Scholar
  43. 43.
    Boynton, P.E., R.A. Stokes and D.T. Wilkinson. 1968. Primeval fireball intensity at λ = 3.3 mm. Phys. Rev. Lett. 21: 462-465ADSCrossRefGoogle Scholar
  44. 44.
    Bracewell, R.N. 1959. Ed. Paris Symposium on Radio Astronomy. Stanford University Press, Stanford, USAGoogle Scholar
  45. 45.
    Braginskiǐ, V.B. and V.I. Panov. 1971. Verification of the Equivalence of Inertial and Gravitational Mass. Zhurnal Eksperimental’noi i Teoreticheskoi Fizik 61: 873-879; English translation in Soviet J. Exp. Theor. Phys. 34: 463-466Google Scholar
  46. 46.
    Brans, C.H. 1961. Mach’s Principle and a Varying Gravitational Constant, Ph.D. Thesis, Princeton UniversityGoogle Scholar
  47. 47.
    Brans, C.H. 2008. Scalar-tensor Theories of Gravity: Some personal history. Am. Inst. Phys. Conf. Ser. 1083: 34-46ADSzbMATHGoogle Scholar
  48. 48.
    Brans, C.H. 2016. 65 Years in and Around Relativity. In At the Frontier of Spacetime: Scalar-Tensor Theory, Bell’s Inequality, Machs Principle, Exotic Smoothness, edited by T. Asselmeyer-Maluga. SpringerGoogle Scholar
  49. 49.
    Brans, C., and R.H. Dicke. 1961. Mach’s Principle and a Relativistic Theory of Gravitation. Phys. Rev. 124: 925-935ADSMathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Brault, J.W. 1962. The Gravitational Red Shift in the Solar Spectrum. Ph.D. Thesis, Princeton UniversityGoogle Scholar
  51. 51.
    Brill, D.R. and J.M. Cohen. 1966. Rotating Masses and Their Effect on Inertial Frames. Phys. Rev. 143: 1011-1015ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    Brown, M.E. and P.J.E. Peebles. 1987. The local extragalactic velocity field, the local mean mass density, and biased galaxy formation. Astrophys. J. 317: 588-592ADSCrossRefGoogle Scholar
  53. 53.
    Burbidge, G.R. 1958. Nuclear Energy Generation and Dissipation in Galaxies. Publ. Astron. Soc. Pacific 70: 83-89ADSCrossRefGoogle Scholar
  54. 54.
    Burbidge, G.R. 1959. The theoretical explanation of radio emission, in Bracewell (1959), pp. 541-551Google Scholar
  55. 55.
    Burke, B.F. 2009. Radio astronomy from first contacts to the CMBR. In Peebles, Page, and Partridge (2009), pp. 176-183Google Scholar
  56. 56.
    Cedarholm, J.P. and C.H. Townes. 1959. A New Experimental Test of Special Relativity. Nature 184: 1350-1351ADSCrossRefGoogle Scholar
  57. 57.
    Cedarholm, J.P., G.F. Bland, B.L. Havens and C.H. Townes. 1958. New Experimental Test of Special Relativity. Phys. Rev. Lett. 1: 342-343ADSCrossRefGoogle Scholar
  58. 58.
    Champeney, D.C., G.R. Isaak and A.M. Khan. 1963. An ‘aether drift’ experiment based on the Mössbauer effect. Phys. Lett. 7: 241-243ADSCrossRefGoogle Scholar
  59. 59.
    Chase, C.T. 1926. A Repetition of the Trouton-Noble Ether Drift Experiment. Phys. Rev. 28: 378-383ADSCrossRefGoogle Scholar
  60. 60.
    Chernin, A.D. 1994. FROM THE HISTORY OF PHYSICS: How Gamow calculated the temperature of the background radiation or a few words about the fine art of theoretical physics. Phys. Usp. 37: 813-820ADSCrossRefGoogle Scholar
  61. 61.
    Ciufolini, I. and E.C. Pavlis. 2004. A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 431: 958-960ADSCrossRefGoogle Scholar
  62. 62.
    Cocconi, G. and E.E. Salpeter. 1958. A Search for Anisotropy of Inertia. Il Nuovo cimento 10: 646-651ADSCrossRefGoogle Scholar
  63. 63.
    Cocconi, G. and E.E. Salpeter. 1960. Upper Limit for the Anisotropy of Inertia from the Mössbauer Effect. Phys. Rev. Lett. 4: 176-177ADSCrossRefGoogle Scholar
  64. 64.
    Curott, D.R.F. 1965. A Pendulum Gravimeter for Precision Detection of Scalar Gravitational Radiation. Ph.D. Thesis, Princeton UniversityGoogle Scholar
  65. 65.
    Curott, D.R. 1966. Earth deceleration from ancient solar eclipses. Astron. J. 71: 264-269ADSCrossRefGoogle Scholar
  66. 66.
    Curott, D.R. 2015. Private communicationGoogle Scholar
  67. 67.
    Damour, T. and F. Dyson. 1996. The Oklo bound on the time variation of the fine-structure constant revisited. Nucl. Phys. B 480: 37-54ADSCrossRefGoogle Scholar
  68. 68.
    Davis, M., J. Huchra, D.W. Latham and J. Tonry. 1982. A survey of galaxy redshifts. II – The large scale space distribution. Astrophys. J. 253: 423-445ADSCrossRefGoogle Scholar
  69. 69.
    Davis, M., G. Efstathiou, C.S. Frenk and White, S.D.M. 1985. The evolution of large-scale structure in a universe dominated by cold dark matter. Astrophys. J. 292: 371-394ADSCrossRefGoogle Scholar
  70. 70.
    Davis, M. and P.J.E. Peebles. 1983. A survey of galaxy redshifts. V – The two-point position and velocity correlations. Astrophys. J. 267: 465-482ADSCrossRefGoogle Scholar
  71. 71.
    Dawid, R. 2015. String Theory and the Scientific Method. Cambridge University Press, CambridgeGoogle Scholar
  72. 72.
    Dawid, R. 2016. Private communicationGoogle Scholar
  73. 73.
    DeGrasse, R.W., D.C. Hogg, E.A. Ohm and H.E.D. Scovil. 1959. Ultra-Low-Noise Measurements Using a Horn Reflector Antenna and a Traveling-Wave Maser. J. Appl. Phys. Lett. 30: 2013ADSGoogle Scholar
  74. 74.
    Deser, S. 1957. General Relativity and the Divergence Problem in Quantum Field Theory. Rev. Mod. Phys. 29: 417-423ADSMathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    de Vaucouleurs, G. 1970. The Case for a Hierarchical Cosmology. Science 167: 1203-1213ADSCrossRefGoogle Scholar
  76. 76.
    de Vaucouleurs, G. 1982. Five crucial tests of the cosmic distance scale using the Galaxy as fundamental standard. Nature 299: 303-307ADSCrossRefGoogle Scholar
  77. 77.
    DeWitt, C.M. 1957, Ed. Conference on the Role of Gravitation in Physics. Wright Air Development Center Technical Report 57-216; Springfield, Carpenter Lithography and PrintingGoogle Scholar
  78. 78.
    DeWitt, C.M. and D. Rickles. 2011, Eds. The Role of Gravitation in Physics: Report from the 1957 Chapel Hill Conference. Berlin: Edition Open Access, 2011). See http://www.edition-open-sources.org/media/sources/5/Sources5.pdf
  79. 79.
    Dicke, R.H. 1946. The Measurement of Thermal Radiation at Microwave Frequencies. Rev. Sci. Instrum. 17: 268-275ADSCrossRefGoogle Scholar
  80. 80.
    Dicke, R.H. 1957a. The Experimental Basis of Einstein’s Theory. In DeWitt (1957), pp. 5-12Google Scholar
  81. 81.
    Dicke, R.H. 1957b. Principle of Equivalence and the Weak Interactions. Rev. Mod. Phys. 29: 355-362ADSMathSciNetCrossRefGoogle Scholar
  82. 82.
    Dicke, R.H. 1957c. Gravitation without a Principle of Equivalence. Rev. Mod. Phys. 29: 363-376ADSMathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Dicke, R.H. 1959a. Dirac’s Cosmology and the Dating of Meteorites. Nature 183: 170-171ADSCrossRefGoogle Scholar
  84. 84.
    Dicke, R.H. 1959b. New Research on Old Gravitation. Science 129: 621-624ADSCrossRefGoogle Scholar
  85. 85.
    Dicke, R.H. 1961a. The Nature of Gravitation. In Science in Space, edited by Lloyd V. Berkner and H. Odishaw. McGraw-Hill, New York, pp. 91–118Google Scholar
  86. 86.
    Dicke, R.H. 1961b. Dirac’s Cosmology and Mach’s Principle. Nature 192: 440-441ADSzbMATHCrossRefGoogle Scholar
  87. 87.
    Dicke, R.H. 1962a. Machs principle and equivalence. In Evidence for Gravitational Theories: Proceedings of Course 20 of the International School of Physics “Enrico Fermi”, edited by C. Møller, Academic, New York, pp. 1-49Google Scholar
  88. 88.
    Dicke, R.H. 1962b. The Earth and Cosmology. Science 138: 653-664ADSCrossRefGoogle Scholar
  89. 89.
    Dicke, R.H. 1962c. Mach’s Principle and Invariance under Transformation of Units. Phys. Rev. 125: 2163-2167ADSMathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Dicke, R.H. 1963. Experimental Relativity. In Relativity, Groups, and Cosmology, edited by C.M. DeWitt and B. DeWitt. Gordon and Breach, New York, pp. 164-315Google Scholar
  91. 91.
    Dicke, R.H. 1964. The Sun’s Rotation and Relativity. Nature 202: 432-435ADSzbMATHCrossRefGoogle Scholar
  92. 92.
    Dicke, R.H. 1966. The Secular Acceleration of the Earth’s Rotation and Cosmology. In The Earth-Moon System, edited by B.G. Marsden and A.G.W. Cameron. Plenum Press, New York, pp. 98-164Google Scholar
  93. 93.
    Dicke, R.H. 1968. Scalar-Tensor Gravitation and the Cosmic Fireball. Astrophys. J. 152: 1-24ADSCrossRefGoogle Scholar
  94. 94.
    Dicke, R.H. 1969. General relativity: survey and experimental tests. Contemporary Physics 1: 515-531, Proceedings of the International Symposium held at the International Centre for Theoretical Physics, Trieste, 7–28 June, 1968Google Scholar
  95. 95.
    Dicke, R.H. and H.M. Goldenberg. 1967. Solar Oblateness and General Relativity. Phys. Rev. Lett. 18: 313-316ADSCrossRefGoogle Scholar
  96. 96.
    Dicke, R.H. and P.J.E. Peebles. 1979. The big bang cosmology – enigmas and nostrums. In General Relativity: An Einstein Centenary Survey, edited by S.W. Hawking and W.I. Israel. Cambridge University Press, Cambridge, pp. 504-517Google Scholar
  97. 97.
    Dicke, R.H., R. Beringer, R.L. Kyhl and A.B. Vane. 1946. Atmospheric Absorption Measurements with a Microwave Radiometer. Phys. Rev. 70: 340-348ADSCrossRefGoogle Scholar
  98. 98.
    Dicke, R.H., W.F. Hoffmann and R. Krotkov. 1961. Tracking and Orbit Requirements for Experiment to Test Variations in Gravitational Constant. In Space Research II, edited by H.C. van de Hulst, C. de Jager and A.F. Moore. North-Holland, Amsterdam, pp. 287-291Google Scholar
  99. 99.
    Dicke, R.H., P.J.E. Peebles, P.G. Roll and D.T. Wilkinson. 1965. Cosmic Black-Body Radiation. Astrophys. J. 142: 414-419ADSCrossRefGoogle Scholar
  100. 100.
    Dirac, P.A.M. 1937. The Cosmological Constants. Nature 139: 323ADSzbMATHCrossRefGoogle Scholar
  101. 101.
    Drever, R.W.P. 1960. Upper limit to anisotropy of inertial mass from nuclear resonance. Philos. Mag. 5: 409-411ADSCrossRefGoogle Scholar
  102. 102.
    Drever, R.W.P. 1961. A search for anisotropy of inertial mass using a free precession technique. Philos. Mag. 6: 683-687ADSCrossRefGoogle Scholar
  103. 103.
    Dyson, F.W., A.S. Eddington and C. Davidson. 1920. A Determination of the Deflection of Light by the Sun’s Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919. Philos. Trans. Roy. Soc. London Ser. A 220: 291-333ADSCrossRefGoogle Scholar
  104. 104.
    Eddington, A.S. 1936. Relativity Theory of Protons and Electrons. Cambridge University Press, CambridgeGoogle Scholar
  105. 105.
    Einstein, A. 1917. Cosmological Considerations on the General Theory of Relativity. S.-B. Preuss. Akad. Wiss. 142-152Google Scholar
  106. 106.
    Einstein, A. 1923. The Meaning of Relativity. Princeton University Press, PrincetonGoogle Scholar
  107. 107.
    Einstein, A. 1936. Lens-Like Action of a Star by the Deviation of Light in the Gravitational Field. Science 84: 506-507ADSzbMATHCrossRefGoogle Scholar
  108. 108.
    Einstein, A. 1945. The Meaning of Relativity. Princeton University Press, Princeton, second editionGoogle Scholar
  109. 109.
    Einstein, A. and N. Rosen. 1937. On Gravitational Waves. J. Franklin Institute 223: 43-53ADSMathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    Eötvös, R.V., D. Pekár and E. Fekete. 1922. Beiträge zum Gesetze der Proportionalität von Trägheit und Gravität. Ann. Phys. 373: 11-66CrossRefGoogle Scholar
  111. 111.
    Everitt, C.W.F., B. Muhlfelder, D.B. DeBra, et al. 2015. The Gravity Probe B test of general relativity. Classical and Quantum Gravity 32: 224001, 29 p.ADSCrossRefGoogle Scholar
  112. 112.
    Faller, J.E. 1963. An Absolute Interferometric Determination of the Acceleration of Gravity. Ph.D. Thesis, Princeton UniversityGoogle Scholar
  113. 113.
    Faller, J.E. 2014a. Precision measurement, scientific personalities and error budgets: the sine quibus non for big G determinations. Philos. Trans. Roy. Soc. A 372, 20140023, 18 p.ADSCrossRefGoogle Scholar
  114. 114.
  115. 115.
    Faller, J.E. 2015. Private communication.Google Scholar
  116. 116.
    Faller, J.E. and J. Hammond. 1967. Laser-interferometer determination of the acceleration of gravity. IEEE J. Quantum Electron. 3: 266-267ADSCrossRefGoogle Scholar
  117. 117.
    Faller, J.E., I. Winer, W. Carrion, et al. 1969. Laser Beam Directed at the Lunar Retro-Reflector Array: Observations of the First Returns. Science 166: 99-102ADSCrossRefGoogle Scholar
  118. 118.
    Field, G.B., G.H. Herbig and J. Hitchcock. 1966. Radiation Temperature of Space at λ2.6 mm. Astron. J. 71: 161ADSCrossRefGoogle Scholar
  119. 119.
    Fierz, M. 1956. Über die physikalische Deutung der erweiterten Gravitationstheorie P. Jordan’s. Helvetica Physica Acta 29: 128-134MathSciNetzbMATHGoogle Scholar
  120. 120.
    Finzi, A. 1962. Test of Possible Variations of the Gravitational Constant by the Observation of White Dwarfs within Galactic Clusters. Phys. Rev. 128: 2012-2015ADSCrossRefGoogle Scholar
  121. 121.
    Forward, R.L., D. Zipoy, J. Weber, et al. 1961. Upper Limit for Interstellar Millicycle Gravitational Radiation. Nature 189: 473ADSMathSciNetCrossRefGoogle Scholar
  122. 122.
    Gamow, G. 1948. The Origin of Elements and the Separation of Galaxies. Phys. Rev. 74: 505-506ADSCrossRefGoogle Scholar
  123. 123.
    Gamow, G. 1949. On Relativistic Cosmogony. Rev. Mod. Phys. 21: 367-373ADSCrossRefGoogle Scholar
  124. 124.
    Gamow, G. 1952. The creation of the universe. Viking Press, New York, 147 p.Google Scholar
  125. 125.
    Gamow, G. 1953a. Lectures. In Symposium on Astrophysics. University of Michigan, Ann Arbor, June 29 to July 24, pp. 1–30Google Scholar
  126. 126.
    Gamow, G. 1953b. Expanding Universe and the Origin of Galaxies. Dan. Mat. Gys. Medd 27, 10, 15ppGoogle Scholar
  127. 127.
    Gamow, G. 1954. On the steady-state theory of the universe. Astron. J. 59: 200ADSCrossRefGoogle Scholar
  128. 128.
    Gamow, G. 1956. The physics of the expanding universe. Vistas in Astronomy 2: 1726-1732ADSCrossRefGoogle Scholar
  129. 129.
    Geller, M.J. and P.J.E. Peebles, 1972. Test of the Expanding Universe Postulate. Astrophys. J. 174: 1-5ADSCrossRefGoogle Scholar
  130. 130.
    Giganti, J.J., J.V. Larson, J.P. Richard and J. Weber. 1973. Apollo 17: Preliminary Science Report SP-330: pp. 12.1–12.4Google Scholar
  131. 131.
    Goenner, H. 2012. Some remarks on the genesis of scalar-tensor theories. General Relativity and Gravitation 44: 2077-2097ADSMathSciNetzbMATHCrossRefGoogle Scholar
  132. 132.
    Gold, T. 1968. Rotating Neutron Stars as the Origin of the Pulsating Radio Sources. Nature 218: 731-732ADSCrossRefGoogle Scholar
  133. 133.
    Goldenberg, H.M. 1961. The Atomic Hydrogen Maser. Ph.D. Thesis, Harvard UniversityGoogle Scholar
  134. 134.
    Goles, G.G., R.A. Fish and E. Anders. 1960. The record in the meteorites - I. The former environment of stone meteorites as deduced from K 40-Ar 40 ages. Geochimica et Cosmochimica Acta 19: 177-195ADSCrossRefGoogle Scholar
  135. 135.
    Gordon, J.P., H.J. Zeiger and C.H. Townes. 1955. The Maser-New Type of Microwave Amplifier, Frequency Standard, and Spectrometer. Phys. Rev. 99: 1264-1274ADSCrossRefGoogle Scholar
  136. 136.
    Greenstein, J.L. and V.L. Trimble. 1967. The Einstein Redshift in White Dwarfs. Astrophys. J. 149: 283-298ADSCrossRefGoogle Scholar
  137. 137.
    Greenstein, J.L., J.B. Oke and H.L. Shipman. 1971. Effective Temperature, Radius, and Gravitational Redshift of Sirius B. Astrophys. J. 169: 563-566ADSCrossRefGoogle Scholar
  138. 138.
    Greenstein, J.L., J.B. Oke and H. Shipman. 1985. On the redshift of Sirius B. Roy. Astronom. Soc. Quarterly J. 26: 279-288ADSGoogle Scholar
  139. 139.
    Gush, H.P., M. Halpern and E.H. Wishnow. 1990. Rocket measurement of the cosmic-background-radiation mm-wave spectrum. Phys. Rev. Lett. 65: 537-540ADSCrossRefGoogle Scholar
  140. 140.
    Happer, W., P.J.E. Peebles and D.T. Wilkinson. 1999. Robert Henry Dicke. Biographical Memoirs, National Academy of Sciences 77: 1-18Google Scholar
  141. 141.
    Hauser, M.G., R.G. Arendt, T. Kelsall, et al. 1998. The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. I. Limits and Detections. Astrophys. J. 508: 25-43ADSCrossRefGoogle Scholar
  142. 142.
    Hay, H.J., J.P. Schiffer, T.E. Cranshaw and P.A. Egelstaff. 1960. Measurement of the Red Shift in an Accelerated System Using the Mössbauer Effect in Fe57. Phys. Rev. Lett. 4: 165-166ADSCrossRefGoogle Scholar
  143. 143.
    Hetherington, N.S. 1980. Sirius B and the Gravitational Redshift: An Historical Review. Roy. Astron. Soc. Quarterly J. 21: 246-252ADSGoogle Scholar
  144. 144.
    Heyl, P.R. 1930. A Redetermination of the Constant of Gravitation. Bur. Stand. J. Res. 5: 1243-1290CrossRefGoogle Scholar
  145. 145.
    Hill, H.A. and R.T. Stebbins. 1975. The intrinsic visual oblateness of the sun. Astrophys. J. 200: 471-475ADSCrossRefGoogle Scholar
  146. 146.
    Hill, H.A., P.D. Clayton, D.L. Patz, et al. 1974. Solar Oblateness, Excess Brightness, and Relativity. Phys. Rev. Lett. 33: 1497-500ADSCrossRefGoogle Scholar
  147. 147.
    Hoekstra, H., M. Bartelmann, H. Dahle, et al. 2013. Masses of Galaxy Clusters from Gravitational Lensing. Space Sci. Rev. 177: 75-118ADSCrossRefGoogle Scholar
  148. 148.
    Hoffmann, W.F. 1962. A Pendulum Gravimeter for Measurement of Periodic Annual Variations in the Gravitational Constant. Ph.D. Thesis, Princeton UniversityGoogle Scholar
  149. 149.
    Hoffmann, W.F. 2016. Private communicationGoogle Scholar
  150. 150.
    Hoffmann, W.F., R. Krotkov and R.H. Dicke. 1960. Precision Optical Tracking of Artificial Satellites. IRE Transactions on Military Electronics 4: 28-37CrossRefGoogle Scholar
  151. 151.
    Hogg, D.C. 2009. Early Low-Noise and Related Studies at Bell Laboratories, Holmdel, N.J. In Peebles, Page, and Partridge (2009), pp. 70–73Google Scholar
  152. 152.
    Hoyle, F. 1981. The Big Bang in Astronomy. New Scientist 92: 521-524ADSGoogle Scholar
  153. 153.
    Hoyle, F. 1948. A New Model for the Expanding Universe. Month. Not. Royal Astron. Soc. 108: 372-382ADSzbMATHCrossRefGoogle Scholar
  154. 154.
    Hoyle, F., and R.J. Tayler. 1964. The Mystery of the Cosmic Helium Abundance. Nature 203: 1108-1110ADSCrossRefGoogle Scholar
  155. 155.
    Hubble, E. 1929. A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. Proc. Natl. Acad. Sci. 15: 168-173ADSzbMATHCrossRefGoogle Scholar
  156. 156.
    Hubble, E. 1936. The Realm of the Nebulae. Yale University Press, New HavenGoogle Scholar
  157. 157.
    Hubble, E. and M.L. Humason. 1931. The Velocity-Distance Relation among Extra-Galactic Nebulae. Astrophys. J. 74: 43-80ADSCrossRefGoogle Scholar
  158. 158.
    Hughes, V.W., H.G. Robinson and V. Beltran-Lopez. 1960. Upper Limit for the Anisotropy of Inertial Mass from Nuclear Resonance Experiments. Phys. Rev. Lett. 4: 342-344ADSCrossRefGoogle Scholar
  159. 159.
    Hulse, R.A. and J.H. Taylor. 1975. Discovery of a pulsar in a binary system. Astrophys. J. Lett. 195: L51-L53ADSCrossRefGoogle Scholar
  160. 160.
    Humason, M.L., N.U. Mayall and A.R. Sandage. 1956. Redshifts and magnitudes of extragalactic nebulae. Astron. J. 61: 97-162ADSCrossRefGoogle Scholar
  161. 161.
    Infeld, L. 1964. Ed. Conférence internationale sur les theéories relativiste de la gravitation. Pergamon Press, OxfordGoogle Scholar
  162. 162.
    Ives, H.E. and G.R. Stilwell. 1938. An Experimental study of the rate of a moving atomic clock. J. Opt. Soc. Am. 28: 215-226ADSCrossRefGoogle Scholar
  163. 163.
    Jaseja, T.S., A. Javan, J. Murray and C.H. Townes. 1964. Test of Special Relativity or of the Isotropy of Space by Use of Infrared Masers. Phys. Rev. 133: 1221-1225ADSMathSciNetzbMATHCrossRefGoogle Scholar
  164. 164.
    Jentschel, M., J. Krempel and P. Mutti. 2009. A validity test of E = m c2. Eur. Phys. J. Special Topics 172, 353-362ADSCrossRefGoogle Scholar
  165. 165.
    Jones, B.J.T., V.J. Martínez, E. Saar and V. Trimble. 2004. Scaling laws in the distribution of galaxies. Rev. Mod. Phys. 76: 1211-1266ADSCrossRefGoogle Scholar
  166. 166.
    Jordan, P. 1937. Die physikalischen Weltkonstanten. Naturwissenschaften 25: 513-517ADSzbMATHCrossRefGoogle Scholar
  167. 167.
    Jordan, P. 1948. Fünfdimensionale Kosmologie. Astron. Nachr. 276: 193-208ADSzbMATHCrossRefGoogle Scholar
  168. 168.
    Jordan, P. 1949. Formation of the Stars and Development of the Universe. Nature 164: 637-640ADSzbMATHCrossRefGoogle Scholar
  169. 169.
    Jordan, P. 1952. Schwerkraft und Weltall. Braunschweig, ViewegGoogle Scholar
  170. 170.
    Jordan, P. 1966. Die Expansion der Erde. Braunschweig, ViewegGoogle Scholar
  171. 171.
    Jordan, P. 1971. The Expanding Earth. Pergammon Press, New YorkGoogle Scholar
  172. 172.
    Jordan, P. and C. Möller. 1947. Über die Feldgleichungen der Gravitation bei variabler “Gravitationslonstante”. Zeitschrift für Naturforshung 2a: 1-2ADSGoogle Scholar
  173. 173.
    Joyce, A., B. Jain, J. Khoury and M. Trodden. 2015. Beyond the cosmological standard model. Phys. Rep. 568: 1-98ADSMathSciNetCrossRefGoogle Scholar
  174. 174.
    Kennedy, R.J. and E.M. Thorndike. 1931. A Search for an Electrostatic Analog to the Gravitational Red Shift. Proc. Natl. Acad. Sci. 17: 620-622ADSzbMATHCrossRefGoogle Scholar
  175. 175.
    Kennedy, R.J. and E.M. Thorndike. 1932. Experimental Establishment of the Relativity of Time. Phys. Rev. 42: 400-418ADSzbMATHCrossRefGoogle Scholar
  176. 176.
    Klein, O. 1956. On the Eddington Relations and their Possible Bearing on an Early State of the System of Galaxies. In Mercier and Kervaire (1956), pp. 147–149Google Scholar
  177. 177.
    Klimov, Y.G. 1963. Occulted Galaxies and an Experimental Verification of the General Theory of Relativity. Astronomicheskii Zhurnal 40: 874-881 (English translation: in Soviet Astronomy 7: 664-669 (1964))ADSMathSciNetGoogle Scholar
  178. 178.
    Kogut, A. 2012. Private communicationGoogle Scholar
  179. 179.
    Kormendy, J., N. Drory, R. Bender and M.E. Cornell. 2010. Bulgeless Giant Galaxies Challenge Our Picture of Galaxy Formation by Hierarchical Clustering. Astrophys. J. 723: 54-80ADSCrossRefGoogle Scholar
  180. 180.
    Kragh, H. 2003. Magic Number: A Partial History of the Fine-Structure Constant. Archive for History of Exact Sciences 57: 395-431MathSciNetzbMATHGoogle Scholar
  181. 181.
    Kragh, H. 2015a. Pascual Jordan, Varying Gravity, and the Expanding Earth. Phys. Perspective 17: 107-134ADSCrossRefGoogle Scholar
  182. 182.
    Kragh, H. 2015b. Gravitation and the earth sciences: the contributions of Robert Dicke. arXiv:1501.04293, 25 p.
  183. 183.
    Kragh, H. 2016. Varying Gravity: Dirac’s Legacy in Cosmology and Geophysics. Birkhäuser Verlag, Basel, in pressGoogle Scholar
  184. 184.
    Krauss, L.M. and B. Chaboyer. 2003. Age Estimates of Globular Clusters in the Milky Way: Constraints on Cosmology. Science 299: 65-70ADSCrossRefGoogle Scholar
  185. 185.
    Kreuzer, L. 1966. The Equivalence of Active and Passive Gravitational Mass. Ph.D. Thesis, Princeton UniversityGoogle Scholar
  186. 186.
    Kreuzer, L.B. 1968. Experimental Measurement of the Equivalence of Active and Passive Gravitational Mass. Phys. Rev. 169: 1007-1012ADSCrossRefGoogle Scholar
  187. 187.
    Kuhn, J.R. 2016. Private communicationGoogle Scholar
  188. 188.
    Kuhn, J.R., K.G. Libbrecht and R.H. Dicke. 1988. The surface temperature of the sun and changes in the solar constant. Science 242: 908-911ADSCrossRefGoogle Scholar
  189. 189.
    Kuhn, J.R., R. Bush, M. Emilio and I.F. Scholl. 2012. The Precise Solar Shape and Its Variability. Science 337: 1638-1640ADSCrossRefGoogle Scholar
  190. 190.
    Kuhn, T.S. 1962. The Structure of Scientific Revolutions. University of Chicago Press, ChicagoGoogle Scholar
  191. 191.
    Landau, L. 1955. On the quantum theory of fields. In Niels Bhor and the Development of Physics, edited by W. Pauli, L. Rosenfeld and V. Weisskopf. McGraw-Hill Book Company, New York, pp. 52–69Google Scholar
  192. 192.
    Landau, L. and E. Lifshitz, 1951, The Classical Theory of Fields, translated from the Russian by M. Hamermesh. Addison-Wesley, ReadingGoogle Scholar
  193. 193.
    Lemaître, G. 1927. Un univers homogène de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Annales de la Société Scientifique de Bruxelles 47: 49-59ADSzbMATHGoogle Scholar
  194. 194.
    Lemaître, G. 1931. The expanding universe. Month. Not. Roy. Astron. Soc. 91: 490-501ADSzbMATHCrossRefGoogle Scholar
  195. 195.
    Lichnerowicz, M.A. and M.A. Tonnelat. 1962. Eds. Les Théories Relativistes de la Gravitation. Centre national de la recherche scientifique, Paris, 475 p.Google Scholar
  196. 196.
    Liebes, S. 1963. Test of the Principle of Equivalence. Bull. Am. Phys. Soc. January 1963, p. 28Google Scholar
  197. 197.
    Liebes, S. 1964. Gravitational Lenses. Phys. Rev. 133: 835-844ADSzbMATHCrossRefGoogle Scholar
  198. 198.
    Liebes, S. 1969. Gravitational Lens Simulator. Am. J. Phys. 37: 103-104ADSCrossRefGoogle Scholar
  199. 199.
    Liebes, S. 2016. Private communicationGoogle Scholar
  200. 200.
    Lightman, A. and R. Brawer. 1990. Origins: The Lives and Worlds of Modern Cosmologists. Harvard University Press, Cambridge Mass.Google Scholar
  201. 201.
    Lightman, A.P. and D.L. Lee. 1973. New Two-Metric Theory of Gravity with Prior Geometry. Phys. Rev. D 8: 3293-3302ADSCrossRefGoogle Scholar
  202. 202.
    LIGO Scientific Collaboration and Virgo Collaboration 2016. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 116, 061102, 16 p.ADSCrossRefGoogle Scholar
  203. 203.
    Lilley, A.E. 1957. Radio Astronomical Measurements of Interest to Cosmology. In DeWitt (1957), pp. 130-136Google Scholar
  204. 204.
    Lopes, I. and J. Silk. 2014. Helioseismology and Asteroseismology: Looking for Gravitational Waves in Acoustic Oscillations. Astrophys. J. 794: article id. 32, 7 p.ADSCrossRefGoogle Scholar
  205. 205.
    Lynden-Bell, D. 2010. Searching for Insight. Ann. Rev. Astron. Astrophys. 48: 1-19ADSCrossRefGoogle Scholar
  206. 206.
    Mach, E. 1893. Die Mechanik in Ihrer Entwickerung Historisch-Kritisch Dargestellt; English translation The Science of Mechanics 1960, Chicago, The Open Court Publishing CompanyGoogle Scholar
  207. 207.
    Maddox, S.J., G. Efstathiou, W.J. Sutherland and J. Loveday. 1990. Galaxy correlations on large scales. Month. Not. Roy. Astron. Soc. 242: 43P-47PADSCrossRefGoogle Scholar
  208. 208.
    Mandelbrot, B. 1975. Les Objects Fractals. Flammarion, ParisGoogle Scholar
  209. 209.
    Mather, J.C., E.S. Cheng, R.E. Eplee Jr., et al. 1990. A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite. Astrophys. J. Lett. 354: L37-40ADSCrossRefGoogle Scholar
  210. 210.
    Mchugh, M.P. 2016. The Brans-Dicke theory and its experimental tests. In At the Frontier of Spacetime: Scalar-Tensor Theory, Bell’s Inequality, Machs Principle, Exotic Smoothness, edited by T. Asselmeyer-Maluga. SpringerGoogle Scholar
  211. 211.
    McKellar, A. 1941. Molecular Lines from the Lowest States of Diatomic Molecules Composed of Atoms Probably Present in Interstellar Space. Publications of the Dominion Astrophysical Observatory Victoria 7: 251-272ADSGoogle Scholar
  212. 212.
    McVittie, G.C. 1962. Ed. Problems of Extra-Galactic Research. Macmillan, New YorkGoogle Scholar
  213. 213.
    Mercier, A. and M. Kervaire. 1956. Eds. Jubilee of Relativity Theory. Helvetica Physica Acta, Suppl. IV Google Scholar
  214. 214.
    Michelson, A.A. 1903. Light waves and their uses. University of Chicago Press, ChicagoGoogle Scholar
  215. 215.
    Michelson, A.A., and H.G. Gale. 1925. The Effect of the Earth’s Rotation on the Velocity of Light, II. Astrophys. J. 61: 140-145ADSCrossRefGoogle Scholar
  216. 216.
    Misner, C.W., K.S. Thorne and J.A. Wheeler. 1973. Gravitation. W.H. Freeman and Co., San FranciscoGoogle Scholar
  217. 217.
    Møller, C. 1956. The Ideal Standard Clocks in the General Theory of Relativity. In Mercier and Kervaire 1956, pp. 54–57Google Scholar
  218. 218.
    Møller, C. 1957. On the Possibility of Terrestrial Tests of the General Theory of Relativity. Nuovo Cimento, Suppl. 6: 381-398Google Scholar
  219. 219.
    Moore, J.H. 1928. Recent Spectrographic Observations of the Companion of Sirius. Publ. Astron. Soc. Pacific 40: 229-233ADSCrossRefGoogle Scholar
  220. 220.
    Moore, R.D. 1966. A Study of Low Frequency Earth Noise and a New Upper Limit to the Intensity of Scalar Gravitational Waves. Ph.D. Thesis, Princeton UniversityGoogle Scholar
  221. 221.
    Morgan, W.J. 1964. An Astronomical and Geophysical Search for Scalar Gravitational Waves. Ph.D. Thesis, Princeton UniversityGoogle Scholar
  222. 222.
    Morgan, W.J., J.O. Stoner and R.H. Dicke. 1961. Periodicity of Earthquakes and the Invariance of the Gravitational Constant. J. Geophys. Res. 66: 3831-3843ADSCrossRefGoogle Scholar
  223. 223.
    Morrison, D. and H.A. Hill. 1973. Current Uncertainty in the Ratio of Active-to-Passive Gravitational Mass. Phys. Rev. D 8: 2731-2733ADSCrossRefGoogle Scholar
  224. 224.
    Mössbauer, R.L. 1958. Kernresonanzfluoreszenz von Gammastrahlung in Ir191. Zeit. Phys. 151: 124-143ADSCrossRefGoogle Scholar
  225. 225.
    Muhleman, D.O., R.D. Ekers and E.B. Fomalont. 1970. Radio Interferometric Test of the General Relativistic Light Bending Near the Sun. Phys. Rev. Lett. 24: 1377-1380ADSCrossRefGoogle Scholar
  226. 226.
    Nordtvedt, K. 1968. Equivalence Principle for Massive Bodies. I. Phenomenology. Phys. Rev. 169: 1014-1016ADSCrossRefGoogle Scholar
  227. 227.
    Oort, J. 1958. Distribution of Galaxies and the Density of the Universe. In Stoops (1958), pp. 183–203Google Scholar
  228. 228.
    Oppenheimer, J.R. and H. Snyder. 1939. On Continued Gravitational Contraction. Phys. Rev. 56: 455-459ADSzbMATHCrossRefGoogle Scholar
  229. 229.
    Orosz, J.A., J.E. McClintock, J.P. Aufdenberg, et al. 2011. Astrophys. J. 742: 84, 10pp.ADSCrossRefGoogle Scholar
  230. 230.
    Osterbrock, D.E. 2009. The Helium Content of the Universe. In Peebles, Page, and Partridge (2009), pp. 86–92Google Scholar
  231. 231.
    Osterbrock, D.E. and J.B. Rogerson, Jr. 1961. The Helium and Heavy-Element Content of Gaseous-Nebulae and the Sun. Publ. Astron. Soc. Pacific 73: 129-134ADSCrossRefGoogle Scholar
  232. 232.
    Partridge, R.B. and D.T. Wilkinson. 1967. Isotropy and Homogeneity of the Universe from Measurements of the Cosmic Microwave Background. Phys. Rev. Lett. 18: 557-559ADSCrossRefGoogle Scholar
  233. 233.
    Pauli, W. 1933. Die allgemeinen Prinzipien der Wellenmechanik. Handbuch der Physik, Quantentheorie. Springer, BerlinGoogle Scholar
  234. 234.
    Pauli, W. 1980. General principles of quantum mechanics. Springer, Heidelberg, 1980Google Scholar
  235. 235.
    Peebles, P.J.E. 1961. Observational Tests and Theoretical Problems Relating to the Conjecture that the Strength of the Electromagnetic Interaction may be Variable. Ph.D. Thesis, Princeton UniversityGoogle Scholar
  236. 236.
    Peebles, P.J.E. 1966. Primordial Helium Abundance and the Primordial Fireball. II. Astrophys. J. 146: 542-552ADSCrossRefGoogle Scholar
  237. 237.
    Peebles, P.J.E. 1971. Physical Cosmology. Princeton University Press, Princeton, N.J.Google Scholar
  238. 238.
    Peebles, P.J.E. 1986. The mean mass density of the Universe. Nature 321: 27-32ADSCrossRefGoogle Scholar
  239. 239.
    Peebles, P.J.E. 2012. Seeing Cosmology Grow. Ann. Rev. Astron. Astrophys. 50: 1-28ADSCrossRefGoogle Scholar
  240. 240.
    Peebles, P.J.E. 2014. Discovery of the hot Big Bang: What happened in 1948. Eur. Phys. J. H 39: 205-223CrossRefGoogle Scholar
  241. 241.
    Peebles, P.J. and R.H. Dicke. 1962a. Significance of Spatial Isotropy. Phys. Rev. 127: 629-631ADSCrossRefGoogle Scholar
  242. 242.
    Peebles, J. and R.H. Dicke. 1962b. The Temperature of Meteorites and Dirac’s Cosmology and Mach’s Principle. J. Geophys. Res. 67: 4063-4070ADSCrossRefGoogle Scholar
  243. 243.
    Peebles, P.J. and R.H. Dicke. 1962c. Cosmology and the Radioactive Decay Ages of Terrestrial Rocks and Meteorites. Phys. Rev. 128: 2006-2011ADSCrossRefGoogle Scholar
  244. 244.
    Peebles, P.J.E. and R.H. Dicke. 1968. Origin of the Globular Star Clusters. Astrophys. J. 154: 891-908ADSCrossRefGoogle Scholar
  245. 245.
    Peebles, P.J.E. and B. Ratra. 1988. Cosmology with a time-variable cosmological ‘constant’. Astrophys. J. Lett. 325: L17-L20ADSCrossRefGoogle Scholar
  246. 246.
    Peebles, P.J. and B. Ratra. 2003. The cosmological constant and dark energy. Rev. Mod. Phys. 75: 559-606ADSMathSciNetzbMATHCrossRefGoogle Scholar
  247. 247.
    Peebles, P.J.E. and J. Silk. 1990. A cosmic book of phenomena. Nature 346: 233-239ADSCrossRefGoogle Scholar
  248. 248.
    Peebles, P.J.E. and J.T. Yu. 1970. Primeval Adiabatic Perturbation in an Expanding Universe. Astrophys. J. 162: 815-836ADSCrossRefGoogle Scholar
  249. 249.
    Peebles, P.J.E., R.A. Daly and R. Juszkiewicz. 1989. Masses of rich clusters of galaxies as a test of the biased cold dark matter theory. Astrophys. J. 347: 563-574ADSCrossRefGoogle Scholar
  250. 250.
    Peebles, P.J.E., L.A. Page, Jr. and R.B. Partridge. 2009. Finding the Big Bang. Cambridge University Press, Cambridge, UKGoogle Scholar
  251. 251.
    Penzias, A.A. and R.W. Wilson. 1965. A Measurement of Excess Antenna Temperature at 4080 Mc/s. Astrophys. J. 142: 419-421ADSCrossRefGoogle Scholar
  252. 252.
    Perlmutter, S., G. Aldering, G. Goldhaber, et al. 1999. Measurements of Ω and Λ from 41 high-redshift supernovae. Astrophys. J. 517: 565-586ADSCrossRefGoogle Scholar
  253. 253.
    Pettengill, G.H. and I.I. Shapiro. 1965. Radar Astronomy. Ann. Rev. Astron. Astrophys. 3: 377-410ADSCrossRefGoogle Scholar
  254. 254.
    Planck Collaboration 2015a. Planck intermediate results. XXIV. Constraints on variations in fundamental constants. Astron. Astrophys. 580: A22, 25 p.CrossRefGoogle Scholar
  255. 255.
    Planck Collaboration 2015b. Planck 2015 results. XIII. Cosmological Parameters. arXiv:1502.01589v2, 67 pp.
  256. 256.
  257. 257.
    Popper, D.M. 1954. Red Shift in the Spectrum of 40 Eridani B. Astrophys. J. 120: 316-321ADSCrossRefGoogle Scholar
  258. 258.
    Pound, R.V. 2000. Weighing photons. Classical and Quantum Gravity 17: 2303-2311ADSzbMATHCrossRefGoogle Scholar
  259. 259.
    Pound, R.V. and G.A. Rebka. 1959. Gravitational Red-Shift in Nuclear Resonance. Phys. Rev. Lett. 3: 439-441ADSCrossRefGoogle Scholar
  260. 260.
    Pound, R.V. and G.A. Rebka. 1960. Apparent Weight of Photons. Phys. Rev. Lett. 4: 337-341ADSCrossRefGoogle Scholar
  261. 261.
    Pound, R.V. and J.L. Snider. 1964. Effect of Gravity on Nuclear Resonance. Phys. Rev. Lett. 13: 539-540ADSzbMATHCrossRefGoogle Scholar
  262. 262.
    Pugh, G.E. 1959. Weapons Systems Evaluation Group Research Memorandum No. 11, The Pentagon, Washington 25, D.C.; https://einstein.stanford.edu/content/sci˙papers/papers/Pugh˙G˙1959˙109.pdf
  263. 263.
    Rainville, S., J.K. Thompson, E.G. Myers, et al. 2005. Nature 438: 1096-1097ADSCrossRefGoogle Scholar
  264. 264.
    Refsdal, S. 1964. The gravitational lens effect. Month. Not. Roy. Astron. Soc. 128: 295-306 and 307-310ADSMathSciNetzbMATHCrossRefGoogle Scholar
  265. 265.
    Renn, J., T. Sauer and J. Stachel. 1997. The origin of gravitational lensing: a postscript to Einstein’s 1936 Science paper. Science 275: 184-186ADSMathSciNetzbMATHCrossRefGoogle Scholar
  266. 266.
    Ribas, I. 2010. The Sun and stars as the primary energy input in planetary atmospheres. IAU Symposium 264: 3-18ADSGoogle Scholar
  267. 267.
    Riess, A.G., A.V. Filippenko, P. Challis, et al. 1998. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astronomical J. 116: 1009-1038ADSCrossRefGoogle Scholar
  268. 268.
    Robertson, H.P. 1956. Cosmological Theory. In Mercier and Kervaire (1956) pp. 128–146Google Scholar
  269. 269.
    Robinson, I., A. Schild and E.L. Schucking. 1965. Eds. Quasistellar Sources and Gravitational Collapse. University of Chicago Press, ChicagoGoogle Scholar
  270. 270.
    Roll, P.G. 2016. Private communicationGoogle Scholar
  271. 271.
    Roll, P.G., R. Krotkov and R.H. Dicke. 1964. The equivalence of inertial and passive gravitational mass. Ann. Phys. 26: 442-517ADSMathSciNetzbMATHCrossRefGoogle Scholar
  272. 272.
    Roll, P.G. and D.T. Wilkinson. 1966. Cosmic Background Radiation at 3.2 cm-Support for Cosmic Black-Body Radiation. Phys. Rev. Lett. 16: 405-407ADSCrossRefGoogle Scholar
  273. 273.
    Roman, N.G. 1961. Ed. Conference on Experimental Tests of Theories of Relativity. Available at https://einstein.stanford.edu/content/sci˙papers/papers/1961˙SU˙Relativity˙Conf.pdf
  274. 274.
    Rosenband, T., D.B. Hume, P.O. Schmidt, et al. 2008. Frequency Ratio of Al+ and Hgl+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place. Science 319: 1808-1812ADSCrossRefGoogle Scholar
  275. 275.
    Rozelot, J.-P. and C. Damiani. 2011. History of solar oblateness measurements and interpretation. Eur. Phys. J. H 36: 407-436CrossRefGoogle Scholar
  276. 276.
    Ruderfer, M. 1960. First-Order Terrestrial Ether Drift Experiment Using the Mössbauer Radiation. Phys. Rev. Lett. 5: 191-192ADSCrossRefGoogle Scholar
  277. 277.
    Rugh, S.E. and H. Zinkernagel. 2002. The quantum vacuum and the cosmological constant problem. Studies in History and Philosophy of Modern Physics 33: 663-705ADSMathSciNetzbMATHCrossRefGoogle Scholar
  278. 278.
    Rutherford, E. and A.H. Compton. 1919. Radio-activity and Gravitation. Nature 104: 412zbMATHCrossRefGoogle Scholar
  279. 279.
    Sandage, A. 1958. Current Problems in the Extragalactic Distance Scale. Astrophys. J. 127: 513-526ADSCrossRefGoogle Scholar
  280. 280.
    Sandage, A. 1961. The Ability of the 200-INCH Telescope to Discriminate Between Selected World Models. Astrophys. J. 133: 355-392ADSMathSciNetCrossRefGoogle Scholar
  281. 281.
    Sandage, A. 2010. The Tolman Surface Brightness Test for the Reality of the Expansion. V. Provenance of the Test and a New Representation of the Data for Three Remote Hubble Space Telescope Galaxy Clusters. Astronomical J. 139: 728-742ADSCrossRefGoogle Scholar
  282. 282.
    Schiff, L.I. 1958. Sign of the Gravitational Mass of a Positron. Phys. Rev. Lett. 1: 254-255ADSCrossRefGoogle Scholar
  283. 283.
    Schiff, L.I. 1960. Possible New Experimental Test of General Relativity Theory. Phys. Rev. Lett. 4: 215-217ADSCrossRefGoogle Scholar
  284. 284.
    Schmidt, M. 1963. 3C 273: A Star-Like Object with Large Red-Shift. Nature 197: 1040ADSCrossRefGoogle Scholar
  285. 285.
    Schucking, E.L. 1999. Jordan, Pauli, politics, Brecht, and a variable gravitational constant. Phys. Today 52: 26-31zbMATHCrossRefGoogle Scholar
  286. 286.
    Schwarzschild, M. 1958. Structure and Evolution of the Stars. Princeton University Press, PrincetonGoogle Scholar
  287. 287.
    Sciama, D.W. 1953. On the origin of inertia. Month. Not. Roy. Astron. Soc. 113: 34-42ADSMathSciNetzbMATHCrossRefGoogle Scholar
  288. 288.
    Sciama, D.W. 1964. The Physical Structure of General Relativity. Rev. Mod. Phys. 36: 463-469ADSCrossRefGoogle Scholar
  289. 289.
    Seielstad, G.A., R.A. Sramek and K.W. Weiler. 1970. Measurement of the Deflection of 9.602-GHz Radiation from 3C279 in the Solar Gravitational Field. Phys. Rev. Lett. 24: 1373-1376ADSCrossRefGoogle Scholar
  290. 290.
    Shakeshaft, J.R., M. Ryle, J.E. Baldwin, et al. 1955. A survey of radio sources between declinations − 38° and 83°. Memoirs of the Royal Astronomical Society 67: 106-152ADSGoogle Scholar
  291. 291.
    Shapiro, I.I. 1964. Fourth Test of General Relativity. Phys. Rev. Lett. 13: 789-791ADSMathSciNetCrossRefGoogle Scholar
  292. 292.
    Shapiro, I.I. 1967. New Method for the Detection of Light Deflection by Solar Gravity. Science 157: 806-808ADSCrossRefGoogle Scholar
  293. 293.
    Shapiro, I.I. 2015. Private communicationGoogle Scholar
  294. 294.
    Shapiro, I.I., G.H. Pettengill, M.E. Ash, et al. 1968. Fourth test of General Relativity: Preliminary Results. Phys. Rev. Lett. 20: 1265-1269ADSCrossRefGoogle Scholar
  295. 295.
    Shapiro, S.S., J.L. Davis, D.E. Lebach and Gregory, J.S. 2004. Measurement of the Solar Gravitational Deflection of Radio Waves using Geodetic Very-Long-Baseline Interferometry Data, 1979 1999. Phys. Rev. Lett. 92: 121101, 4 p.ADSCrossRefGoogle Scholar
  296. 296.
    Shklovsky, I.S. 1966. Relict Radiation in the Universe and Population of Rotation Levels of Interstellar Molecules. Astronomical Circular, Soviet Academy of Science 364: 1-3.Google Scholar
  297. 297.
    Shlyakhter, A.I. 1976. Direct test of the constancy of fundamental nuclear constants. Nature 264: 340ADSCrossRefGoogle Scholar
  298. 298.
    Singer, S.F. 1956. Application of an Artificial Satellite to the Measurement of the General Relativistic “Red Shift”. Phys. Rev. 104: 11-14ADSMathSciNetCrossRefGoogle Scholar
  299. 299.
    Steinhardt, P.J. and N. Turok. 2007. Endless Universe Beyond the Big Bang. Doubleday, New YorkGoogle Scholar
  300. 300.
    St. John, C.E. 1928. Evidence for the Gravitational Displacement of Lines in the Solar Spectrum Predicted by Einstein’s Theory. Astrophys. J. 67: 195-239ADSCrossRefGoogle Scholar
  301. 301.
    Stoops, R. 1958. La structure et L’évolution de l’Univers. Brussels, Institut International de Physique SolvayGoogle Scholar
  302. 302.
    Taylor, J.H. and J.M. Weisberg. 1982. A new test of general relativity - Gravitational radiation and the binary pulsar PSR 1913+16. Astrophys. J. 253: 908-920ADSCrossRefGoogle Scholar
  303. 303.
    Teller, E. 1948. On the Change of Physical Constants. Phys. Rev. 73: 801-802ADSCrossRefGoogle Scholar
  304. 304.
    Thaddeus, P. and J.F. Clauser. 1966. Cosmic Microwave Radiation at 2.63 mm from Observations of Interstellar CN. Phys. Rev. Lett. 16: 819-822ADSCrossRefGoogle Scholar
  305. 305.
    Thompson, M.J., J. Christensen-Dalsgaard, M.S. Miesch and J. Toomre. 2003. The Internal Rotation of the Sun. Ann. Rev. Astron. Astrophys. 41: 599-643ADSCrossRefGoogle Scholar
  306. 306.
    Tolman, R.C. 1930. On the Estimation of Distances in a Curved Universe with a Non-Static Line Element. Proc. Natl. Acad. Sci. 16: 511-520ADSzbMATHCrossRefGoogle Scholar
  307. 307.
    Tolman, R.C. 1934. Relativity, Thermodynamics, and Cosmology. Clarendon Press, OxfordGoogle Scholar
  308. 308.
    Trimble, V. 1996. H0: The Incredible Shrinking Constant, 1925–1975. Publ. Astron. Soc. Pacific 108: 1925-1975Google Scholar
  309. 309.
    Trumpler, R.J. 1956. Observational Results on the Light Deflection and on Red-shift in Star Spectra. In Mercier and Kervaire (1956), pp. 106–113Google Scholar
  310. 310.
    Turner, K.C. 1962. A New Experimental Limit on the Velocity Dependent Interaction Between Natural Clocks and Distant Matter. Ph.D. Thesis, Princeton UniversityGoogle Scholar
  311. 311.
    Turner, K.C. and H.A. Hill. 1964. New Experimental Limit on Velocity-Dependent Interactions of Clocks and Distant Matter. Phys. Rev. 134: 252-256ADSzbMATHCrossRefGoogle Scholar
  312. 312.
    Tyson, J.A. and R.P. Giffard. 1978. Gravitational-wave astronomy. Ann. Rev. Astron. Astrophys. 16: 521-554ADSCrossRefGoogle Scholar
  313. 313.
    Uzan, J.-P. 2003. The fundamental constants and their variation: observational and theoretical status. Rev. Mod. Phys. 75: 403-455ADSMathSciNetzbMATHCrossRefGoogle Scholar
  314. 314.
    Vessot, R.F.C., M.W. Levine, E.M. Mattison, et al. 1980. Test of relativistic gravitation with a space-borne hydrogen maser. Phys. Rev. Lett. 45: 2081-2084ADSCrossRefGoogle Scholar
  315. 315.
    Walsh, D., R.F. Carswell and R.J. Weymann. 1979. 0957 + 561 A, B – Twin quasistellar objects or gravitational lens. Nature 279: 381-384ADSCrossRefGoogle Scholar
  316. 316.
    Weber, J. 1960. Detection and Generation of Gravitational Waves. Phys. Rev. 117: 306-313ADSMathSciNetzbMATHCrossRefGoogle Scholar
  317. 317.
    Weber, J. 1961. Discussion in Roman (1961), pp. 104–115Google Scholar
  318. 318.
    Weber, J. 1962. On the Possibility of Detection and Generation of Gravitational Waves. In Lichnerowicz and Tonnelat (1962), pp. 441–450Google Scholar
  319. 319.
    Weber, J. 1969. Evidence for Discovery of Gravitational Radiation. Phys. Rev. Lett. 22: 1320-1324ADSCrossRefGoogle Scholar
  320. 320.
    Weber, J. 1970. Gravitational Radiation Experiments. Phys. Rev. Lett. 24: 276-279ADSCrossRefGoogle Scholar
  321. 321.
    Weber, J. and J.A. Wheeler. 1957. Reality of the Cylindrical Gravitational Waves of Einstein and Rosen. Rev. Mod. Phys. 29: 509-515ADSMathSciNetzbMATHCrossRefGoogle Scholar
  322. 322.
    Webster, B.L. and P. Murdin. 1972. Cygnus X-1 – a Spectroscopic Binary with a Heavy Companion? Nature 235: 37-38ADSCrossRefGoogle Scholar
  323. 323.
    Weinberg, S. 1987. Anthropic bound on the cosmological constant. Phys. Rev. Lett. 59: 2607-2610ADSCrossRefGoogle Scholar
  324. 324.
    Weiss, R. 2000. Interview by Shirley K. Cohen. Pasadena, California, May 10, 2000. Oral History Project, California Institute of Technology Archives.Google Scholar
  325. 325.
    Weiss, R. 2016. Private communicationGoogle Scholar
  326. 326.
    Weiss, R. and B. Block. 1965. A Gravimeter to Monitor the \hbox{$_0{\rm S}_0$}S00 Dilational Mode of the Earth. J. Geophys. Res. 70: 5615-5627ADSCrossRefGoogle Scholar
  327. 327.
    Wheeler, J.A. 1957. The Present Position of Classical Relativity Theory and Some of its Problems. In DeWitt (1957), pp. 1–5Google Scholar
  328. 328.
    Wheeler, J.A. and K. Ford. 1998. Geons, Black Holes and Quantum Foam. New York, NortonGoogle Scholar
  329. 329.
    White, S.D.M., J.F. Navarro, A.E. Evrard and C.S. Frenk. 1993. The baryon content of galaxy clusters: a challenge to cosmological orthodoxy. Nature 366: 429-433ADSCrossRefGoogle Scholar
  330. 330.
    Wickes, W.C. 1972. Primordial Helium Abundance and Population-II Binary Stars: a New Measurement Technique. Ph.D. Thesis, Princeton UniversityGoogle Scholar
  331. 331.
    Wickes, W.C. 2016. Private communicationGoogle Scholar
  332. 332.
    Will, C.M. 1986. Was Einstein Right? Putting General Relativity to the Test. Basic Books, New YorkGoogle Scholar
  333. 333.
    Will, C.M. 1993. Theory and Experiment in Gravitational Physics, second edition. Cambridge University Press, CambridgeGoogle Scholar
  334. 334.
    Will, C.M. 2015. The 1919 measurement of the deflection of light. Classical and Quantum Gravity 32: 124001, 14 p.ADSCrossRefGoogle Scholar
  335. 335.
    Williams, J.G., S.G. Turyshev and D.H. Boggs. 2012. Lunar laser ranging tests of the equivalence principle. Classical and Quantum Gravity 29: 184004, 11 p.ADSCrossRefGoogle Scholar
  336. 336.
    Wilson, W. and D. Kaiser. 2014. Calculating Times: Radar, Ballistic Missiles, and Einstein’s Relativity. In Science and Technology in the Global Cold War, edited by N. Oreskes and J. Krige. MIT Press, Cambridge Mass., pp. 273–316Google Scholar
  337. 337.
    Zanoni, C.A. 1967. Development of Daytime Astrometry to Measure the Gravitational Deflection of Light. Ph.D. Thesis, Princeton UniversityGoogle Scholar
  338. 338.
    Zanoni, C.A. and H.A. Hill. 1965. Reduction of Diffracted Light for Astrometry Near the Sun. Journal of the Optical Society of America 55: 1608-1611ADSCrossRefGoogle Scholar
  339. 339.
    Zel’dovich, Ya.B. 1968. The Cosmological Constant and the Theory of Elementary Particles. Usp. Fiz. Nauk 95: 209-230 [English translation in Sov. Phys. Usp. 11: 381-393]CrossRefGoogle Scholar
  340. 340.
    Zhu, W.W., I.H. Stairs, P.B. Demorest, et al. 2015. Testing Theories of Gravitation Using 21-Year Timing of Pulsar Binary J1713+0747. Astrophys. J. 809: 41, 14 p.ADSCrossRefGoogle Scholar
  341. 341.
    Zwicky, F. 1929. On the Red Shift of Spectral Lines through Interstellar Space. Proc. Natl. Acad. Sci. 15: 773-779ADSzbMATHCrossRefGoogle Scholar
  342. 342.
    Zwicky, F. 1933. Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta 6: 110-127ADSzbMATHGoogle Scholar
  343. 343.
    Zwicky, F. 1937. Nebulae as Gravitational Lenses. Phys. Rev. 51: 290-290ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Joseph Henry Laboratories, Princeton UniversityPrincetonUSA

Personalised recommendations