The European Physical Journal H

, Volume 41, Issue 1, pp 1–67 | Cite as

The history of time and frequency from antiquity to the present day

Article

Abstract

I will discuss the evolution of the definitions of time, time interval, and frequency from antiquity to the present day. The earliest definitions of these parameters were based on a time interval defined by widely observed apparent astronomical phenomena, so that techniques of time distribution were not necessary. With this definition, both time, as measured by clocks, and frequency, as realized by some device, were derived quantities. On the other hand, the fundamental parameter today is a frequency based on the properties of atoms, so that the situation is reversed and time and time interval are now derived quantities. I will discuss the evolution of this transition and its consequences. In addition, the international standards of both time and frequency are currently realized by combining the data from a large number of devices located at many different laboratories, and this combination depends on (and is often limited by) measurements of the times of clocks located at widely-separated laboratories. I will discuss how these measurements are performed and how the techniques have evolved over time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Jespersen, J. Fitz-Randolph, From Sundials to Atomic Clocks: Understanding Time and Frequency (Dover Publications, Inc., Mineola, New York, 1999), Chap. 3.Google Scholar
  2. 2.
    T. Jones, Splitting the Second: The Story of Atomic Time (Philadephia, PA, Institute of Physics, 2000), Chap. 2. Google Scholar
  3. 3.
    G.S. Hawkins, J.B. White, Stonehenge Decoded (Hippocrene Books, New York, 1988).Google Scholar
  4. 4.
    E.G. Richards, Mapping Time: The Calendar and its History (Oxford University Press, Oxford, 1998), Chap. 2. Google Scholar
  5. 5.
    Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac, Her Majesty’s Stationary Office, London, 1961, Chap. 14.Google Scholar
  6. 6.
    F. Cabrol, The Catholic Encyclopedia (Robert Appleton Company, New York, 1912), Chap. 13. Google Scholar
  7. 7.
    Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac, Her Majesty’s Stationary Office, London, 1961, Chap. 3.Google Scholar
  8. 8.
    L. Essen, J.V.L. Parry, An Atomic Standard of Frequency and Time Interval: a Cesium Resonator, Nature 176, 280-282 (1955.) See also The Cesium Resonator as a Standard of Frequency and Time, Phil. Trans. Roy. Soc. London A 250, 45-69 (1957) by the same authors.ADSCrossRefGoogle Scholar
  9. 9.
    W. Markowitz, R. Glenn Hall, L. Essen and J.V. L. Parry, Frequency of Cesium in Terms of Ephemeris Time, Phys. Rev. Lett. 1, 105-107 (1958).ADSCrossRefGoogle Scholar
  10. 10.
    D.D. McCarthy, P.K. Seidelmann, Time: From Earth Rotation to Atomic Physics (Weinheim, Germany, Wiley-VCH GmbH), Chap. 12. Google Scholar
  11. 11.
    S. Leschiutta, The Definition of the Atomic Second, Metrologia 42, S10-S19 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    Resolution 1 of the 13th Conférence Générale des Poids et Mesures (CGPM), available at: www.bipm.org/en/CGPM/db/13/1 (1967).
  13. 13.
    Resolution 9 of the 13th Conférence Générale des Poids et Mesures (CGPM), available at:www.bipm.org/en/CGPM/db/11/9 (1960).
  14. 14.
    T.P. Heavner, E.A. Donley, F. Levi, G. Costanzo, T.E. Parker, J.H. Shirley, N. Ashby, S. Barlow and S.R. Jefferts, First accuracy evaluation of NIST-F2, Metrologia 51, 174-182 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    W.M. Itano, L.L. Lewis and D.J. Wineland, Shift of 2S1/2 Hyperfine Splittings due to Blackbody Radiation, Phys. Rev. A 52, 1233-1235 (1982).ADSCrossRefGoogle Scholar
  16. 16.
    T.F. Gallagher, W.E. Cooke, Interactions of Blackbody Radiation with Atoms, Phys. Rev. Lett. 42, 835-839 (1979).ADSCrossRefGoogle Scholar
  17. 17.
    G. Becker, Uncertainty of Cesium-Beam Time Standards due to Beam Asymmetry, IEEE Trans. Inst. Meas. 29, 297-300 (1980).ADSCrossRefGoogle Scholar
  18. 18.
    B. Guinot, Application of General Relativity to Metrology, Metrologia 34, 261-290 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    N.F. Ramsey, Molecular Beams (The Clarendon Press, Oxford, 1956), Chap. XIV.Google Scholar
  20. 20.
    N.F. Ramsey, Molecular Beams (The Clarendon Press, Oxford, 1956), Chap. X.Google Scholar
  21. 21.
    H.J. Gerritsen, G. Niehuis, Multidirectional Doppler pumping: A new method to prepare an atomic beam having a large fraction of excited atoms, Appl. Phys. Lett. 26: 347-349 (1975).ADSCrossRefGoogle Scholar
  22. 22.
    M. Arditi, J.L. Picque, A cesium beam atomic clock using laser optical pumping, Preliminary tests, J. Phys. Lett. 41: L379-L381 (1980).CrossRefGoogle Scholar
  23. 23.
    C. Salomon, J. Dalibard, W. Philips, A. Clairon and S. Guellati, Laser cooling of cesium atoms below 3 μK, Europhys. Lett. 12: 683-688 (1990).ADSCrossRefGoogle Scholar
  24. 24.
    J.R. Zacharias, Precision Measurements with Molecular Beams, Minutes of the 1954 Annual Meeting of the American Physical Society, 28-30 January, 1954, Phys. Rev. 94: 751 (1954). Google Scholar
  25. 25.
    A. Clairon, P. Laurent, G. Santarelli, S. Ghezali, S.N. Lea and M. Bouhara, A cesium fountain frequency standard: preliminary measurements, IEEE Trans. Instr. Meas. 44: 128-131 (1995).CrossRefGoogle Scholar
  26. 26.
    T.P. Heavner, E.A. Donley, F. Levi, G. Costanzo, T.E. Parker, J.H. Shirley, N. Ashby, S. Barlow and S.R. Jefferts, First accuracy evaluation of NIST-F2, Metrologia 51: 174-182 (2014).ADSCrossRefGoogle Scholar
  27. 27.
    J. Guéna, P. Rosenbusch, Ph. Laurent, M. Abgrall, D. Rovera, G. Santarelli, M.E. Tobar, S. Bize and A. Clairon, Demonstration of a Dual Alkali Rb/Cs Fountain Clock, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 57, 647 (2010). CrossRefGoogle Scholar
  28. 28.
    The International System of Units, Bureau International des Poids et Mesures, Appendix 2, “Practical Realization of the Unit of Time”, Published online as SIApp2sen.pdf at: www.bipm.org.
  29. 29.
    J.L. Hall, Nobel Lecture: Defining and measuring optical frequencies, Rev. Mod. Phys. 78: 1279-1295 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    L. Hollberg, S. Diddams, A. Bartels, T. Fortier and K. Kim, The Measurement of Optical Frequencies, Metrologia 42, S105-S124 (2005).ADSCrossRefGoogle Scholar
  31. 31.
    A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik and P.O. Schmidt, Optical Atomic Clocks, Rev. Mod. Phys. 87, 637-701 (2015).ADSCrossRefGoogle Scholar
  32. 32.
    S. Droste, F. Ozimek, Th. Udem, K. Predehl, T.W. Hasch, H. Schnatz, G. Grosche and R. Holzwarth, Optical Frequency Transfer over a Single-Span 1840 km Fiber Link, Phys. Rev. Lett. 111, 110801 1-5 (2013).CrossRefGoogle Scholar
  33. 33.
    L.C. Sinclair, F.R. Giorgetta, W.C. Swann, E. Baumann, I.R. Coddington and N. Reynolds Newbury, The impact of turbulence on high accuracy time-frequency transfer across free space, Optical Society of America, Conference on Imaging and Applied Optics, Arlington, Virginia, June 23-27, 2013, available at: http://dx.doi.org/10.1364/PCDVT.2013.PTu2F.2
  34. 34.
    J. Flury, Relativistic Geodesy with Clocks, Proc. 2015 Joint Conference of the IEEE International Frequency Control Symposium and the European Frequency and Time Forum, Denver, Colorado, 12–16 April 2015, in press. Google Scholar
  35. 35.
    Web page of The Royal Museum at Greenwich, available at: http://www.rmg.co.uk.
  36. 36.
    B. Guinot, History of the Bureau International de l’Heure, Astronomical Society of the Pacific, Conference Series, edited by S. Dick, D. McCarthy and B. Luzum (2000), Vol. 208, pp. 175-184.Google Scholar
  37. 37.
    C. Audoin, B. Guinot, Les Fondements de la mesure du temps (Masson, Paris, 1998).Google Scholar
  38. 38.
    A. Lambert, Le Bureau International de l’heure, son rôle, son fonctionnement, Annuaire du Bureau des Longitudes, Paris, Gauthier-Villars, 1940.Google Scholar
  39. 39.
    G. Bigourdan, A. Lambert, N. Stoyko and B. Guinot, Bulletin Horaire, Paris, Observatoire de Paris, 1922-1967 (19 volumes).Google Scholar
  40. 40.
    G. Bigourdan, Corrections des signaux horaires déterminées par le Bureau International de l’heure, Paris, Gaithier-Villars, 1920-1924. Google Scholar
  41. 41.
    Wireless Time Signals: Radio-Telegraphic Time and Weather Signals Transmitted from the Eiffel Tower and Their Reception, published by Paris Bureau of Longitudes, E & F. N. Spon Ltd., New York, 1915.Google Scholar
  42. 42.
    M.A. Lombardi, G.K. Nelson, WWVB: A Half Century of Delivering Accurate Frequency and Time by Radio, J. Res. of NIST 119, 25-54 (2014). See also the references in this article.CrossRefGoogle Scholar
  43. 43.
    H.J. Walls, QST Magazine, October, 1924, p. 9. Google Scholar
  44. 44.
    R.T. Cox, Standard Radio Wavemeter, Bureau of Standards Type R 70B, J. Opt. Soc. Am. 6, 162-168 (1922).ADSCrossRefGoogle Scholar
  45. 45.
    C. Moon, A Precision Method of Calibrating a Tuning Fork by Comparison with a Pendulum, available on the web at: dx.doi.org/10.6028/jres.004.016 (1929).Google Scholar
  46. 46.
    Lissajou Figures, Encyclopedia Britannica. See also, J.D. Lawrence, A Catalog of Special Plane Curves (Dover, New York, 1972), pp. 178-183.Google Scholar
  47. 47.
    W.G. Cady, United States Patent 1,472,583, October 30, 1923.Google Scholar
  48. 48.
    Captain J.L. Jayne, The Naval Observatory Time Service and How to Use its Radio Signals, The Keystone: Annual Convention of the American National Retail Jewelers’ Association, 1913, pp. 129-135.Google Scholar
  49. 49.
    A.H. Orme, Regulating 10 000 Clocks by Wireless, Technical World Magazine, October 1913, pp. 232-233.Google Scholar
  50. 50.
    www.navy-radio-com/commsta/cutler.htm. See also Wikipedia article “VLF Transmitter Cutler”.
  51. 51.
    T.H. White, D.C. Washington, AM Station History, 2006. Web page at EarlyRadioHistory.us.Google Scholar
  52. 52.
    W.G. Cady, United States Patent 1,450,246, April, 1923.Google Scholar
  53. 53.
    G. Hefley, The Development of Loran-C Navigation and Timing, National Bureau of Standards Monograph 129, Washington, D. C., Government Printing Office, 1972.Google Scholar
  54. 54.
    B. Guinot, E. Felicitas Arias, Atomic Time-Keeping from 1955 to the present, Metrologia 42, S20-S30 (2005).ADSCrossRefGoogle Scholar
  55. 55.
    B. Guinot, Some Properties of Algorithms for Atomic Time Scales, Metrologia 24, 195-198 (1987).ADSCrossRefGoogle Scholar
  56. 56.
    R.A. Nelson, D.D. McCarthy, S. Malys, J. Levine, B. Guinot, H.F. Fliegel, R.L. Beard and T.R. Bartholomew, The Leap Second: Its History and Possible Future, Metrologia 38, 509-529 (2001).ADSCrossRefGoogle Scholar
  57. 57.
    D.D. Davis, B.E. Blair, J.F. Barnaba, Long-term Continental U. S. Timing System via Television Networks, IEEE Spectrum 8: 41-52 (1971).CrossRefGoogle Scholar
  58. 58.
    Annual Report on Time Activities of the BIPM, Sèvres, France, BIPM, 2008, Vol. 3. Table 1. The more recent reports are available on line at: www.bipm.org/en/bipm/tai/annual-report.html.
  59. 59.
    IERS Bulleting A is available at: http://datacenter.iers.org/eop/-/somos/5Rgv/latest/6 and can also be received by e-mail with a request to http://maia.usno.navy.mil/docrequest.html.
  60. 60.
    IERS Bulletin C is available at: http://datacenter.iers.org/eop/-/somos/5Rgv/latest/16 and can also be received by e-mail.
  61. 61.
  62. 62.
    J. Levine, The Statistical Modeling of Atomic Clocks and the Design of Time Scales, Rev. Sci. Instr. 83, 012201-28 (2012).Google Scholar
  63. 63.
    G. Petit, F. Arias, A. harmegnies, G. Panfilo and L. Tisserand, UTCr: A rapid realization of UTC, Metrologia 51, 33-39 (2014). ADSCrossRefGoogle Scholar
  64. 64.
    R.B. Blackman, J.W. Tukey, The Measurement of Power Spectra (Dover Publications, New York, 1958).Google Scholar
  65. 65.
    Circular T is published monthly and is available on the BIPM web site as: ftp://ftp2.bipm.org/pub/tai//publication/cirt/
  66. 66.
    G. Panfilo, E.F. Arias, Algorithms for TAI, IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control 57, 140-150 (2010).CrossRefGoogle Scholar
  67. 67.
    G. Panfilo, A. Harmegnies and L. Tisserand, A New Prediction Algorithm for the Generation of International Atomic Time, Metrologia 49, 49-56 (2012). CrossRefGoogle Scholar
  68. 68.
    J. Azoubib, M. Granveaud and B. Guinot, Estimation of the Scale Unit Duration of Time Scales, Metrologia 13:87-93 (1977).ADSCrossRefGoogle Scholar
  69. 69.
    E.K. Smith, S. Weintraub, The constants in the equation for atmospheric refractive index at radio frequencies, Proc. IRE 41, 1035-1037 (1953).CrossRefGoogle Scholar
  70. 70.
    B.E. Blair, Time and Frequency Dissemination: An overview of Principles and Techniques, National Bureau of Standards Monograph 140, Chapter 10, Annex A, Washington, DC, US Government Printing Office, 1974.Google Scholar
  71. 71.
    P. Misra, P. Enge, Global Positioning System: Signals, Measurements, and Performance (Massachusetts, Ganga-Jamuna Press, Lincoln, 2006). Chap. 2.Google Scholar
  72. 72.
    International GNSS Service, available on the web at: http://www.igs.org. The service provides a number of precise ephemerides and clock products with delays ranging from a few hours for the “Ultra-Rapid” ephemerides derived from observations to 12–18 days for the “Final” products. The accuracies of the final products are approximately 2.5 cm for the satellite orbits and 75 ps RMS for the satellite and stations clocks.
  73. 73.
    E.D. Kaplan, C.J. Hegarty, Understanding GPS: Principles and Applications, 2nd edn., edited by Boston M.A. (Artech House, 2006), Chap. 7, p. 311ff.Google Scholar
  74. 74.
    J. Guo, R.B. Langley, A New tropospheric propagation delay mapping function for elevation angles down to 2°, Proc. Of the Institute of Navigation ION/GPS Conference, Portland, Oregon, Sept. 9–12, 2003. Google Scholar
  75. 75.
    A.E. Niell, Global mapping functions for the atmosphere delay at radio wavelengths, J. Geophys. Res. B 2, 3227-3246 (1972).Google Scholar
  76. 76.
    P. Axelrad, K. Larson and B. Jones, Use of the correct satellite repeat period to characterize and reduce site-specific multipath errors, Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2005), Long Beach California, Sept. 13-16, 2005, pp. 2638-2648.Google Scholar
  77. 77.
    G. Hefley, The Development of Loran-C Navigation and Timing, NBS Monograph 129, Boulder, Colorado, National Bureau of Standards, October, 1972.Google Scholar
  78. 78.
    D.D. Davis, J.L. Jespersen and G. Kamas, The use of television signals for time and frequency dissemination, Proc. IEEE 58, 931-933 (1970).ADSCrossRefGoogle Scholar
  79. 79.
    D.W. Allan, Time transfer using nearly simultaneous reception times of a common transmission, Proc. IEEE 60, 625-627 (1972).ADSCrossRefGoogle Scholar
  80. 80.
    G. Petit, Z. Jiang, GPS all in view time transfer for TAI computation, Metrologia 45, 35-45 (2008). ADSCrossRefGoogle Scholar
  81. 81.
    D.L. Mills, Computer Network Time Synchronization, 2nd edn. (CRC Press, Boca Raton, Florida), p. 64ff. Google Scholar
  82. 82.
    Z. Jiang, H. Konaté and W. Lewandowski, Review and Preview of Two-way Time Transfer for UTC generation – from TWSTFT to TWOTFT, Proc. Joint Conference of the Frequency Control Symposium and the European Time and Frequency Forum, 2013, pp. 501–504. Available on the web at: http://www.eftf.org/proceedings/proceedingsEFTF2013.pdf.
  83. 83.
    Z. Jiang, G. Petit, Combination of TWSTFT and GNSS for accurate UTC time transfer, Metrologia 46: 305-314 (2009). ADSCrossRefGoogle Scholar
  84. 84.
    P. Misra, P. Enge, Global Positioning System: Signals, Measurements, and Performance (Massachusetts, Ganga-Jamuna Press, Lincoln, 2006). Chap. 2, p. 48ff.Google Scholar
  85. 85.
    J.C. Eidson, Measurement, Control, and Communication using IEEE 1588 (Springer-Verlag, London, 2006), Chap. 5. Google Scholar
  86. 86.
    M. Rost, D. Piester, W. Yang, T. Feldmann, T. Wübbena and A. Bauch, Time transfer through optical fibers over a distance of 73 km with an uncertainty below 100 ps, Metrologia 49: 772-778 (2012).ADSCrossRefGoogle Scholar
  87. 87.
    J.A. Barnes, D.W. Allan, Two papers on the statistics of precision frequency generators, National Bureau of Standards Technical Report 8878, 1965. Available from the publications list at: http://tf.nist.gov, publication 224.
  88. 88.
    D.W. Allan, J.A. Barnes, A modified Allan variance with increased oscillator characterization ability, Proc. 35th Annual Frequency Control Symposium, 1981, pp. 470-475. Available from the publications list at: http://tf.nist.gov, publication 560.
  89. 89.
    D.A. Howe, A total estimator of the Hadamard function used for GPS operations, Proc. 32nd Precise Time and Time Interval Planning and Applications Meeting, Nov. 29, 2000, pp. 255-268. Available from the publications list at: http://tf.nist.gov, publication 1431.

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Time and Frequency Division and JILA, National Institute of Standards and Technology and the University of ColoradoBoulderUSA

Personalised recommendations