Advertisement

The European Physical Journal H

, Volume 41, Issue 1, pp 69–91 | Cite as

Fractals and the Korcak-law: a history and a correction

  • Attila R. ImreEmail author
  • Josef Novotný
Article

Abstract

The Korcak-law – first presented in an empirical form in 1938 to describe the size-distribution of various geographical objects, including lakes and islands by Jaromír Korčák – was one of the examples used by Benoit Mandelbrot to show that fractals are not only mathematical monsters, but that they are applicable to describe many natural objects and phenomena too. In this paper, we would like to give a brief overview about the history of the Korcak-law and its connection to other similar rules. Moreover, we would like to show, that although there are similarities between fractal-related laws and the Korcak-law, the Korcak-exponent is not directly related to fractal dimension. In this sense, the measure introduced by Benoit Mandelbrot based on Korčák’s empirical findings is not a fractal measure.

Keywords

Fractal Dimension Fractal Geometry Double Logarithmic Plot Methane Cycle Euclidean Triangle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auerbach, F. 1913. Das gesetz der bevölkerungskonzentration. Petermanns Geographische Mitteilungen 59: 74-76.Google Scholar
  2. 2.
    Avnir, D., O. Biham, D. Lidar and O. Malcai. 1998. Is the geometry of nature fractal? Science 279: 39-40.ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Ballesteros, F.J., V.J. Martinez, A. Moya and B. Luque. 2015. Energy balance and the origin of Kleiber’s law, arXiv:arXiv:1407.3659.
  4. 4.
    Benford, F. 1938. The law of anomalous numbers. Proc. Am. Philos. Soc. 78: 551-572. zbMATHGoogle Scholar
  5. 5.
    Bowley, A.L. 1939. The International Institute of Statistics. J. Roy. Stat. Soc. 102: 83-85.CrossRefGoogle Scholar
  6. 6.
    Brakman, S., H. Garretsen, C. Van Marrewijk and M. van den Berg. 1999. The return of Zipf: Towards a further understanding of the rank-size distribution. Journal of Regional Science 39: 739-767.CrossRefGoogle Scholar
  7. 7.
    Campo Bagatin, A., V.J. Martinez and S. Paredes. 2002. Multifractal Fits to the Observed Main Belt Asteroid Distribution, Icarus 157: 549-553. ADSCrossRefGoogle Scholar
  8. 8.
    Cheng, Q.M. 1995. The perimeter-area fractal model and its application to geology. Mathematical Geology 27: 69-82.CrossRefGoogle Scholar
  9. 9.
    Condon, E.U. 1928. Statistics of vocabulary. Science 67: 300-300.ADSCrossRefGoogle Scholar
  10. 10.
    Convertino, M., A. Bockelie, G.A. Kiker, R. Munoz-Carpena and I. Linkov. 2012. Shorebird patches as fingerprints of fractal coastline fluctuations due to climate change. Ecological Processes 1: 1-17.CrossRefGoogle Scholar
  11. 11.
    Dohnanyi, J.W. 1969. Collisional model of asteroids and their debris. J. Geophys. Res. 74: 2531-2554. ADSCrossRefGoogle Scholar
  12. 12.
    Downing, J.A., Y.T. Prairie, J.J. Cole, C.M. Duarte, L.J. Tranvik, R.G. Striegl, W.H. McDowell, P. Kortelainen, N.F. Caraco, J.M. Melack and J.J. Middelburg. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51: 2388-2397. CrossRefGoogle Scholar
  13. 13.
    Erlandsson, J., C.D. McQuaid and M. Skold. 2011. Patchiness and Co-Existence of Indigenous and Invasive Mussels at Small Spatial Scales: The Interaction of Facilitation and Competition. PloS One 6: e26958.ADSCrossRefGoogle Scholar
  14. 14.
    Estoup, J.B. 1916. Gammes Sténographiques, Institut Sténographique de France, Paris.Google Scholar
  15. 15.
    Fréchet, M.R. 1941. Sur la loi de répartition de certaines grandeurs géographiques. Journal de la Societé de Statistique de Paris 82: 114-122.Google Scholar
  16. 16.
    Garner, W. 2012. Wandering visionary in math’s far realms. ‘The Fractalist,’ Benoit B. Mandelbrot’s Math Memoir. Book review published in New York Times on October 30, http://www.nytimes.com/2012/10/31/books/the-fractalist-benoit-b-mandelbrots-math-memoir.html.
  17. 17.
    Gibrat, R. 1932. Les inégalités économiques, Sirey, Paris.Google Scholar
  18. 18.
    Gutenberg, B. and C.F. Richter. 1944. Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 34: 185-188.Google Scholar
  19. 19.
    Halbfass, W. 1922. Die Seen der Erde, Petermanns Mitteilungen, Erganzungsheft 185, Justus Perthes, Gotha, Germany. Google Scholar
  20. 20.
    Hampl, M. 2000. Reality, Society and Geographical/Environmental Organization: Searching for an Integrated Order, Charles University, Faculty of Science, Department of Social Geography and Regional Development, Prague.Google Scholar
  21. 21.
    Hanley, M.L. 1937. Word Index to James Joyce’s Ulysses, University of Wisconsin Press.Google Scholar
  22. 22.
    Hayes, A.G. 2011. Hydrocarbon Lakes on Titan and Their Role in the Methane Cycle, Ph.D. Thesis, CALTECH.Google Scholar
  23. 23.
    Heaps, H.S. 1978. Information Retrieval: Computational and Theoretical Aspects, Academic Press.Google Scholar
  24. 24.
    Hendriks, A.J., A.M. Schipper, M. Caduff and M.A.J. Huijbregts. 2012. Size relationships of water inflow into lakes: Empirical regressions suggest geometric scaling. J. Hydrol. 414-415: 482-490. ADSCrossRefGoogle Scholar
  25. 25.
    Herdan, G. 1960. Type-token mathematics, The Hague, Mouton.Google Scholar
  26. 26.
    Imre, A., 1992. Problems of measuring the fractal dimension by the slit-island method, Scr. Metal. Mater. 27: 1713-1716. CrossRefGoogle Scholar
  27. 27.
    Imre, A. 1995. Comment on “Perimeter-maximum-diameter method for measuring the fractal dimension of fractured surface”, Phys. Rev. B 51: 16470.ADSCrossRefGoogle Scholar
  28. 28.
    Imre, A.R. 2006. Artificial fractal dimension obtained by using perimeter-area relationship on digitalized images, Appl. Math. Comput. 173: 443-449. MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Imre, A.R. 2015. Description of the area-distribution of landmasses by Korcak exponent – the importance of the Arabic and Indian subcontinents in proper classification, Arab. J. Geosci. 8: 3615-3619. CrossRefGoogle Scholar
  30. 30.
    Imre, A.R., D. Cseh, M. Neteler and D. Rocchini. 2011. Korcak dimension as a novel indicator of landscape fragmentation and re-forestation, Ecological Indicators 11: 1134-1138. CrossRefGoogle Scholar
  31. 31.
    Imre, A.R., J. Novotný and D. Rocchini. 2012. The Korcak-exponent: a non-fractal descriptor for landscape patchiness, Ecological Complexity 12: 70-74.CrossRefGoogle Scholar
  32. 32.
    Jang, J. and Y.H. Jang. 2012. Spatial distributions of islands in fractal surfaces and natural surfaces, Chaos Solitons Fractals 45: 1453-1459. ADSCrossRefGoogle Scholar
  33. 33.
    Jones, B.J.T., V.J. Martinez, E. Saar and V. Trimble. 2004. Scaling laws in the distribution of galaxies, Rev. Mod. Phys. 76: 1211-1266. ADSCrossRefGoogle Scholar
  34. 34.
    Kleiber, M. 1932. Body size and metabolism, Hilgardia 6: 315-353.CrossRefGoogle Scholar
  35. 35.
    Korčák, J. 1938. Geopolitické základy Československa. Jeho kmenové oblasti. (The Geopolitic Foundations of Czechoslovakia. Its Tribal Areas). Prague, Orbis.Google Scholar
  36. 36.
    Korčák, J., 1940. Deux types fondamentaux de distribution statistique, Bull. De l’Institut International de Statistique III: 295-299. zbMATHGoogle Scholar
  37. 37.
    Korčák, J., 1941. Přordíní dualita statistického rozložení, Statistický obzor 22: 171-222.Google Scholar
  38. 38.
    Láska, V. 1928. Zpráva o zeměpisně-statistickém atlasu. Věstník Československé akademie věd a umění, pp. 61-67. Google Scholar
  39. 39.
    Lotka, A.J. 1926. The frequency distribution of scientific productivity, J. Washington Acad. Sci. 16: 317-323.Google Scholar
  40. 40.
    Lovejoy, S. 1982. Area-Perimeter Relation for Rain and Cloud Areas, Science 216: 185-187. ADSCrossRefGoogle Scholar
  41. 41.
    Mandelbrot, B. 1967. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156: 636-638. ADSCrossRefGoogle Scholar
  42. 42.
    Mandelbrot, B.B. 1975. Stochastic models for the Earth’s relief, shape and fractal dimension of coastlines, and number-area rule for islands, Proc. Natl. Acad. Sci. USA 72: 3825-3838. ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Mandelbrot, B.B. 1982. The Fractal Geometry of Nature, Freeman, New York.Google Scholar
  44. 44.
    Mu, Z.Q., C.W. Lung, Y. Kang and Q.Y. Long. 1993. Perimeter-maximum-diameter method for measuring the fractal dimension of a fractured surface, Phys. Rev. B 48: 7679-7681. ADSCrossRefGoogle Scholar
  45. 45.
    Newcomb, S. 1881. Note on the frequency of use of the different digits in natural numbers, Am. J. Math. 4: 39-40.MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Newman, M.E.J. 2005. Power laws, Pareto distributions and Zipf’s law, Contemp. Phys. 46: 323-351.ADSCrossRefGoogle Scholar
  47. 47.
    Novotný, J. 2010. Korčákův zákon aneb zajímavá historie Přírodní duality statistického rozložení. Informace České geografické společnosti 29: 1-10.Google Scholar
  48. 48.
    Novotný, J. and V. Nosek. 2009. Nomothetic geography revisited: statistical distributions, their underlying principles, and inequality measures. Geografie 114: 282-297. Google Scholar
  49. 49.
    Pareto, V. 1896. Cours d’Economie Politique Droz, Geneva.Google Scholar
  50. 50.
    Reed, W.J. 2001. The Pareto, Zipf and other power laws, Econ. Lett. 74: 15-19.CrossRefzbMATHGoogle Scholar
  51. 51.
    Richardson, L.F. 1944. The distribution of wars in time, J. Roy. Stat. Soc. 107: 242-250. CrossRefGoogle Scholar
  52. 52.
    Richardson, L.F. 1948. Variation of the frequency of fatal quarrels with magnitude. J. Am. Stat. Assoc. 43: 523-546.CrossRefGoogle Scholar
  53. 53.
    Richardson, L.F. 1961. The problem of contiguity: An appendix to Statistic of Deadly Quarrels, General systems: Yearbook of the Society for the Advancement of General Systems Theory. Ann Arbor, Mich.: The Society for General Systems Research 6: 139-187.Google Scholar
  54. 54.
    Seekell, D.A., M.L. Pace, L.J. Tranvik and C. Verpoorter. 2013. A fractal-based approach to lake size-distributions, Geophys. Res. Lett. 40: 517-521.ADSCrossRefGoogle Scholar
  55. 55.
    Seuront, L., 2010. Fractals and Multifractals in Ecology and Aquatic Science, CRC Press.Google Scholar
  56. 56.
    Sugihara, G. and R.M. May. 1990. Applications of Fractals in Ecology, Trends Ecol. Evol. 5: 79-86.CrossRefGoogle Scholar
  57. 57.
    Willis, J.C. and G.U. Yule. 1922. Some statistics of evolution and geographical distribution in plants and animals, and their significance. Nature 109: 177-179. ADSCrossRefGoogle Scholar
  58. 58.
    Wright, Q. 1942. A Study of War, Chicago University Press.Google Scholar
  59. 59.
    Zaninetti, L., A. Cellino and V. Zappalá. 1995. On the fractal dimension of the families of the asteroids, Astron. Astrophys. 294: 270-273. ADSGoogle Scholar
  60. 60.
    Zipf, G.K. 1941. National Unity and Disunity, Bloomington, Ind.Google Scholar
  61. 61.
    Zipf, G.K. 1949. Human behaviour and the principle of least effort, Addison-Wesley, Reading MA.Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.MTA Centre for Energy ResearchBudapestHungary
  2. 2.Department of Energy EngineeringBudapest University of Technology and EconomicsBudapestHungary
  3. 3.Dept. of Social Geography and Regional Development, Faculty of Science, Charles UniversityPraha 2Czech Republic

Personalised recommendations