The European Physical Journal H

, Volume 40, Issue 4–5, pp 385–467 | Cite as

The fifth force: A personal history

  • Ephraim FischbachEmail author
Personal recollection


On January 6, 1986, a paper written by our group appeared in Physical Review Letters entitled “Reanalysis of the Eötvös Experiment”. In that Letter we reanalyzed a well-known 1922 paper by Eötvös, Pekár, and Fekete (EPF) which compared the accelerations of samples of different composition to the Earth. Our surprising conclusion was that “Although the Eötvös experiment has been universally interpreted as having given null results, we find in fact that this is not the case”. Two days later a front page story appeared in the New York Times under the headline “Hints of 5th Force in Universe Challenge Galileo’s Findings”, and so was born the concept of a “fifth force”. In this personal history I review the pre-history which motivated our paper, and discuss details of our reanalysis of the EPF paper that have not been presented previously. Our work led to illuminating correspondence with Robert Dicke and Richard Feynman which are presented here for the first time. I also discuss an interesting meeting with T.D. Lee, one of whose papers with C.N. Yang provided part of the theoretical motivation for our work. Although there is almost no support from the many experiments motivated by the EPF data for a fifth force with properties similar to those that we hypothesized in our original paper, interest in the EPF experiment continues for reasons I outline in the Epilogue.


Personal History Baryon Number Physical Review Letter Casimir Force Newtonian Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adelberger, E.G., J.H. Gundlach, B.R. Heckel, S. Hoedl and S. Schlamminger. 2009. Torsion balance experiments: A low-energy frontier of particle physics. Progress in Particle and Nuclear Physics 62: 102-134.ADSCrossRefGoogle Scholar
  2. 2.
    Antoniadis, I., Arkani-Hamed, S. Dimopoulos and G. Dvali. 1998. New dimensions at a millimeter to a fermi and superstrings at a TeV. Physics Letters B 436: 257-263.ADSCrossRefGoogle Scholar
  3. 3.
    Arkani-Hamed, N., S. Dimopoulos and G. Dvali. 1999. Phenomenology, astrophysics, and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity. Physical Review D 59: 086004.ADSCrossRefGoogle Scholar
  4. 4.
    Aronson S.H., G.J. Bock, H.-Y. Cheng and E. Fischbach. 1982. Determination of the fundamental parameters of the \(K^0 - \bar K^0\) system in the energy range 30–110 GeV. Physical Review Letters 48: 1306-1309.ADSCrossRefGoogle Scholar
  5. 5.
    Aronson S.H., G.J. Bock, H.-Y. Cheng and E. Fischbach. 1983a. Energy dependence of the fundamental parameters of the \(K^0 - \bar K^0\) system: Experimental analysis. Physical Review D 28: 476-494.ADSCrossRefGoogle Scholar
  6. 6.
    Aronson S.H., G.J. Bock, H.-Y. Cheng and E. Fischbach. 1983b. Energy dependence of the fundamental parameters of the \(K^0 - \bar K^0\) system: Theoretical formalism. Physical Review D 28: 495-523.ADSCrossRefGoogle Scholar
  7. 7.
    Aronson, S.H., H.-Y. Cheng, E. Fischbach and W. Haxton. 1986. Experimental signals for hyperphotons. Physical Review Letters 56: 1342-1345; 56: 2334(E).ADSCrossRefGoogle Scholar
  8. 8.
    Asano, Y. et al. 1981. Search for a rare decay mode \(K^ + \to \pi ^ + \nu \bar \nu\) and axion. Physics Letters B 107: 159-162.ADSCrossRefGoogle Scholar
  9. 9.
    Asano, Y. et al. 1982. A new experimental limit on K+ → π+γγ. Physics Letters B 113: 195-198.ADSCrossRefGoogle Scholar
  10. 10.
    Bartlett, D.F. and S. Lögl. 1988. Limits on an electromagnetic fifth force. Physical Review Letters 61: 2285-2287.ADSCrossRefGoogle Scholar
  11. 11.
    Bartlett, D.F. and W.L. Tew. 1989a. Possible effect of the local terrain on the Australian fifth-force measurement. Physical Review D: 40: 673-675.Google Scholar
  12. 12.
    Bartlett, D.F. and W.L. Tew. 1989b. Possible effect of the local terrain on the North Carolina tower gravity experiment. Physical Review Letters 63: 1531.ADSCrossRefGoogle Scholar
  13. 13.
    Bartlett, D.F. and W.L. Tew. 1990. Terrain and geology near the WTVD tower in North Carolina: Implications for non-Newtonian gravity. Journal of Geophysical Research 95: 17, 363-17, 369.Google Scholar
  14. 14.
    Bell J.S. and J.K. Perring. 1964. 2π decay of the K 20 meson. Physical Review Letters 13: 348-349.ADSCrossRefGoogle Scholar
  15. 15.
    Bernstein J., N. Cabibbo and T.D. Lee. 1964. CP invariance and the 2π decay mode of the K 20. Physics Letters 12: 146-148.ADSCrossRefGoogle Scholar
  16. 16.
    Bizzeti, P.G. 1986. Significance of the Eötvös method for the investigation of intermediate-range forces. Il Nuovo Cimento 94B: 80-86.ADSCrossRefGoogle Scholar
  17. 17.
    Bizzeti P.G. et al. 1989. Search for a composition- dependent fifth force. Physical Review Letters 62: 2901-2904.ADSCrossRefGoogle Scholar
  18. 18.
    Bod, L., E. Fischbach, G. Marx and M. Náray-Ziegler. 1991. One hundred years of the Eötvös experiment. Acta Physica Hungarica 69: 335-355.Google Scholar
  19. 19.
    Bordag, M., G.L. Klimchitskaya, U. Mohideen and V.M. Mostepanenko. 2015. Advances in the Casimir Effect. Clarendon Press, Oxford.Google Scholar
  20. 20.
    Boslough J. 1989. Searching for the secrets of gravity. National Geographic 175 (5): 563-583.ADSGoogle Scholar
  21. 21.
    Bouchiat, C. and J. Iliopoulos. 1986. On the possible existence of a light vector meson coupled to the hypercharge current. Physics Letters B 169: 447-449.ADSCrossRefGoogle Scholar
  22. 22.
    Boynton, P.E. 1988. How well do we understand the torsion balance? In: 5th Force-Neutrino Physics, Proceedings of the XXIIIrd Rencontre de Moriond (VIIIth Moriond Workshop), O. Fackler and J. Trân Thanh Vân (Eds.), edited by Editions Frontiéres, Gif-sur-Yvette, pp. 431-444.Google Scholar
  23. 23.
    Boynton, P.E., D. Crosby, P. Ekstrom and A. Szumilo. 1987. Search for an intermediate-range composition-dependent force. Physical Review Letters 59: 1385-1389.ADSCrossRefGoogle Scholar
  24. 24.
    Braginskii V.B. and V.I. Panov. 1972. Verification of the equivalence of inertial and gravitational mass. Soviet Physics JETP 34: 463-466.ADSGoogle Scholar
  25. 25.
    Cavasinni V., E. Iacopini, E. Polacco, G. Stefanini. 1986. GalileoÕs experiment on free-falling bodies using modern optical techniques. Physics Letters A 116: 157-161.ADSCrossRefGoogle Scholar
  26. 26.
    Chardin G. 1990. CP violation: A matter of gravity? In: CP Violation in Particle and Astrophysics, J. Trân Thanh Vân (Ed.), Editions Frontiéres, Gif-sur-Yvette, pp. 377-385.Google Scholar
  27. 27.
    Chardin G. 1992. CP violation. A matter of (anti) gravity? Physics Letters B 282: 256-262.ADSCrossRefGoogle Scholar
  28. 28.
    Chen, Y.-J. et al. 2014. Isoelectronic measurements yield stronger limits on hypothetical Yukawa interactions in the 40-8000 nm range. arXiv:1410.7267v1.Google Scholar
  29. 29.
    Chu, S.Y. and R.H. Dicke. 1986. New force or thermal gradient in the Eötvös experiment? Physical Review Letters 57: 1823-1824.ADSCrossRefGoogle Scholar
  30. 30.
    Colella, R., A.W. Overhauser and S.A. Werner. 1975. Observation of gravitationally induced quantum interference. Physical Review Letters 34: 1472-1474.ADSCrossRefGoogle Scholar
  31. 31.
    Cornaz, A., B. Hubler and W. Kündig. 1994. Determination of the gravitational constant G at an effective interaction distance of 112 m. Physical Review Letters 72: 1152-1155.ADSCrossRefGoogle Scholar
  32. 32.
    De Bouard, X., D. Dekkers, B. Jordan, R. Mermod, T.R. Willitts, K. Winter, P. Scharff, L. Valentin, M. Vivargent and M. Bott-Bodenhausen. 1965. Two-pion decay of K 20 at 10 GeV/c. Physics Letters 15: 58-61.ADSCrossRefGoogle Scholar
  33. 33.
    Decca, R.S. et al. 2005a. Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions. Annals of Physics 318: 37-80.ADSzbMATHCrossRefGoogle Scholar
  34. 34.
    Decca, R.S. et al. 2005b. Constraining New Forces in the Casimir Regime Using the Isoelectronic Technique. Physical Review Letters 94: 240401.ADSCrossRefGoogle Scholar
  35. 35.
    Dicke, R.H.. 1961. The Eötvös Experiment. Scientific American 205 (6): 81-94.CrossRefGoogle Scholar
  36. 36.
    Eckhardt, D.H. et al. 1988. Tower gravity experiment: evidence for non-Newtonian gravity. Physical Review Letters 60: 2567-2570.ADSCrossRefGoogle Scholar
  37. 37.
    Eötvös, R.V., D. Pekár and E. Fekete. 1922. Beiträge zum Gesetze der Proportionalität von Trägheit und Gravität. Annalen der Physik (Leipzig) 68: 11-66.CrossRefGoogle Scholar
  38. 38.
    Faller J.E., E. Fischbach, Y. Fujii, K. Kuroda, H.J. Paik and C.C. Speake. 1989. Precision experiments to search for the fifth force. IEEE Transactions on Instrumentation and Measurement 38: 180-188.ADSCrossRefGoogle Scholar
  39. 39.
    Feinberg, G. and J. Sucher. 1968. Long-range forces from neutrino-pair exchanges. Physical Review 166: 1638-1644.ADSCrossRefGoogle Scholar
  40. 40.
    Feinberg, G., J. Sucher and C.-K Au. 1989. The dispersion theory of dispersion forces. Physics Reports 180: 83-157.ADSCrossRefGoogle Scholar
  41. 41.
    Fischbach, E. 1965. Coupling of internal and quantum space-time symmetries. Physical Review 137: B642–B644.ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Fischbach, E. 1980a. Tests of General Relativity at the Quantum Level. In: Cosmology and Gravitation, P.G. Bergmann and V. De Sabbata (Eds.). Plenum, New York, pp. 359-373.Google Scholar
  43. 43.
    Fischbach, E. 1984c. Experimental Constraints on New Cosmological Fields. In: Phenomenology of Unified Theories, H. Galić, B. Guberina and D. Tadić (Eds.), World Scientific, Singapore, pp. 156-180.Google Scholar
  44. 44.
    Fischbach, E. 1996. Long-Range Forces and Neutrino Mass. Annals of Physics 247: 213-291.ADSCrossRefGoogle Scholar
  45. 45.
    Fischbach, E., and B.S. Freeman. 1979. Testing General Relativity at the Quantum Level. General Relativity and Gravitation 11: 377-381.ADSCrossRefGoogle Scholar
  46. 46.
    Fischbach, E. and B.S. Freeman. 1980b. Second-order contribution to the gravitational deflection of light. Physical Review D 22: 2950-2952.ADSCrossRefGoogle Scholar
  47. 47.
    Fischbach, E. and N. Nakagawa. 1984a. Apparatus-dependent contributions to g − 2 and other phenomena. Physical Review D 30: 2356-2370.ADSCrossRefGoogle Scholar
  48. 48.
    Fischbach, E. and N. Nakagawa. 1984b. Intrinsic apparatus-dependent effects in high-precision atomic physics experiments. In: Ninth Interactional Conference on Atomic Physics: Satellite Workshop and Conference Abstracts, edited by R.S. Van Dyck, Jr. and E.N. Fortson, World Scientific, Singapore, pp. 55.Google Scholar
  49. 49.
    Fischbach E. and C. Talmadge. 1988b. The fifth force: An introduction to current research. In: 5th Force-Neutrino Physics. Proceedings of the XXIIIrd Rencontre de Moriond (VIIIth Moriond Workshop), O. Fackler and J. Trâh Thanh Vân (Eds.), Editions Frontiéres, Gif-surYvette, pp. 369-382.Google Scholar
  50. 50.
    Fischbach, E. and C. Talmadge. 1992b. Six years of the fifth force. Nature 356: 207-215.ADSCrossRefGoogle Scholar
  51. 51.
    Fischbach, E. and C. Talmadge. 1992c. Present status of searches for non-Newtonian gravity. In: Sixth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, B.H. Sato and T. Nakamura (Eds.), World Scientific, Singapore, pp. 1122-1132.Google Scholar
  52. 52.
    Fischbach, E. and C.L. Talmadge. 1999. The Search for Non-Newtonian Gravity. AIP Press/Springer, New York.Google Scholar
  53. 53.
    Fischbach, E., B.S. Freeman and W.-K. Cheng. 1981. General-relativistic effects in hydrogenic systems. Physical Review D 23: 2157-2180.ADSCrossRefGoogle Scholar
  54. 54.
    Fischbach, E., H.-Y. Cheng, S.H. Aronson, G.J. Bock. 1982. Interaction of the \(K^0 - \bar K^0\) system with external fields. Physics Letters 116B: 73-76.ADSCrossRefGoogle Scholar
  55. 55.
    Fischbach, E., M.P. Haugan, D. Tadić and H.-Y. Cheng. 1985. Lorentz noninvariance and the Eötvös experiments. Physical Review D 32: 154-162.ADSCrossRefGoogle Scholar
  56. 56.
    Fischbach, E., D. Sudarsky, A. Szafer, C. Talmadge and S.H. Aronson. 1986a. Reanalysis of the Eötvös Experiment. Physical Review Letters 56: 3-6. [Erratum: Physical Review Letters 56: (1427)].ADSCrossRefGoogle Scholar
  57. 57.
    Fischbach, E., D. Sudarsky, A. Szafer, C. Talmadge and S.H. Aronson. 1986b. Fischbach et al. respond. Physical Review Letters 57: 2869.ADSCrossRefGoogle Scholar
  58. 58.
    Fischbach, E. et al. 1986c. A new force in nature? In: Intersections Between Particle and Nuclear Physics, AIP Conference Proceedings No. 150, D.F. Geesaman (Ed.), American Institute of Physics, New York, pp. 1102-1118.Google Scholar
  59. 59.
    Fischbach, E., D. Sudarsky, A. Szafer, C. Talmadge and S.H. Aronson. 1987. The Fifth Force. Proceedings of the XXIII International Conference on High Energy Physics, S.C. Loken (Ed.), World Scientific, Singapore, Vol II, pp. 1021-1031.Google Scholar
  60. 60.
    Fischbach, E., D. Sudarsky, A. Szafer and C. Talmadge. 1988a. Long-Range Forces and the Eötvös Experiment. Annals of Physics (New York) 182: 1-89.ADSCrossRefGoogle Scholar
  61. 61.
    Fischbach, E., G.T. Gillies, D.E. Krause, J.G. Schwan and C. Talmadge. 1992a. Non-Newtonian Gravity and New Weak Forces: an Index of Measurements and Theory. Metrologia 29: 213-260.ADSCrossRefGoogle Scholar
  62. 62.
    Fischbach, E. et al. 1994. New Geomagnetic Limit on the Photon Mass and on Long-Range Forces Coexisting with Electromagnetism. Physical Review Letters 73: 514-519.ADSCrossRefGoogle Scholar
  63. 63.
    Fischbach, E., D.E. Krause, C. Talmadge and D. Tadić. 1995. Higher-order weak interactions and the equivalence principle. Physical Review D 52: 5417-5427.ADSCrossRefGoogle Scholar
  64. 64.
    Fischbach, E. et al. 2001. Testing gravity in space and at ultrashort distances. Classical and Quantum Gravity: 18: 2427-2434.ADSzbMATHCrossRefGoogle Scholar
  65. 65.
    Fischbach, E., D.E. Krause, R.S. Decca and D. López. 2003. Testing Newtonian gravity at the nanometer distance scale using the iso-electronic effect. Physics Letters A 318: 165-171.ADSzbMATHCrossRefGoogle Scholar
  66. 66.
    Fitch, V.L., M.V. Isaila and M.A. Palmer. 1988. Limits on the existence of a material-dependent intermediate-range force. Physical Review Letters 60: 1801-1804.ADSCrossRefGoogle Scholar
  67. 67.
    Floratos, E.G. and G.K. Leontaris. 1999. Low scale unification, Newton’s law and extra dimensions. Physics Letters B 465: 95-100.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Franklin, A. 1993. The Rise and Fall of the Fifth Force. American Institute of Physics, New York.Google Scholar
  69. 69.
    Fuji, Y. 1971. Dilaton and possible non-Newtonian gravity. Nature (Physical Science), 234: 5-7.ADSGoogle Scholar
  70. 70.
    Fuji, Y. 1972. Scale invariance and gravity of hadrons. Annals of Physics (New York) 69: 494-521.ADSCrossRefGoogle Scholar
  71. 71.
    Fuji, Y. 1974. Scalar-tensor theory of gravitation and spontaneous breakdown of scale invariance. Physical Review D 9: 874-876.ADSCrossRefGoogle Scholar
  72. 72.
    Fuji, Y. 1975. Spontaneously broken scale invariance and gravitation. General Relativity and Gravitation 6: 29-34.ADSCrossRefGoogle Scholar
  73. 73.
    Fujii, Y. 1981. Composition independence of the possible finite-range gravitational force. General Relativity and Gravitation 13:1147-1155.ADSMathSciNetCrossRefGoogle Scholar
  74. 74.
    Fujii, Y. and Nishino H. 1979. Some phenomenological consequences of the super Higgs effect. Zeitschriji für Physik C, Particles and Fields 2: 247-252.ADSMathSciNetCrossRefGoogle Scholar
  75. 75.
    Galbraith, W., G. Manning, A.E. Taylor, B.D. Jones, J. Malos, A. Astbury, N.H. Lipman and T.G. Walker. 1965. Two-Pion Decay of the K 20 Meson. Physical Review Letters 14: 383-386.ADSCrossRefGoogle Scholar
  76. 76.
    Gibbons, G.W. and B.F. Whiting. 1981. Newtonian gravity measurements impose constraints on unification theories. Nature 291: 636-638.ADSCrossRefGoogle Scholar
  77. 77.
    Grossman, N. et al. 1987. Measurement of the lifetime of K S0 mesons in the momentum range 100 to 350 GeV/c. Physical Review Letters 59: 18-21.ADSCrossRefGoogle Scholar
  78. 78.
    Hall, A.M., H. Armbruster, E. Fischbach and C. Talmadge. 1991. Is the Eötvös experiment sensitive to spin? In: Progress in High Energy Physics, Proceedings of the Second International Conference and Spring School on Medium and High Energy Nuclear Physics, W.-Y.P. Hwang et al. (Eds.), North Holland, New York, pp. 325-339.Google Scholar
  79. 79.
    Heard, H. 1980. The Amazing Mycroft Mysteries, Vanguard Press, New York, pp. 196-197.Google Scholar
  80. 80.
    Hipkin R.G. and B. Steinberger B. 1990. Testing Newton’s law in the Megget water reservoir. In: Gravity, Gradiometry, and Gravimetry, Symposium No. 103, R. Rummel and R.G. Hipkin (Eds.), Springer-Verlag, New York, 31-39.Google Scholar
  81. 81.
    Holding, S.C. and G.J. Tuck. 1984. A new mine determination of the Newtonian gravitational constant. Nature 307: 714-716.ADSCrossRefGoogle Scholar
  82. 82.
    Hólmansson, S., C. Sanders and J. Tucker. 1989. Concise Icelandic-English Dictionary, Idunn, Reykjavík, p. 294.Google Scholar
  83. 83.
    Hoskins, J.K., R.D. Newman, R. Spero and J. Schultz. 1985. Experimental tests of the gravitational inverse-square law for mass separations from 2 to 105 cm. Physical Review D 32: 3084-3095.ADSCrossRefGoogle Scholar
  84. 84.
    Hughes, R. and P. Bianconi. 1967. The Complete Paintings of Bruegel, Harry N. Abrams, New York.Google Scholar
  85. 85.
    Jekeli C., D.H. Eckhardt and A.J. Romaides. 1990. Tower gravity experiment: No evidence for non-Newtonian gravity. Physical Review Letters 64: 1204-1206.ADSCrossRefGoogle Scholar
  86. 86.
    Kammeraad J. et al. 1990. New results from Nevada: A test of Newton’s law using the BREN tower and a high density ground gravity survey. In: New and Exotic Phenomena Õ90, Proceedings of the XXVth Rencontre de Moriond, O. Fackler and J. Trân Thanh Vân (Eds.), Editions Frontiéres, Gif-sur-Yvette, pp. 245-254.Google Scholar
  87. 87.
    Kehagias, A. and K. Sfetsos. 2000. Deviations from the 1 /r2 Newton law due to extra dimensions. Physics Letters B 472: 39-44.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    Kloor, H., E. Fischbach, C. Talmadge and G.L. Greene. 1994. Limits on new forces co-existing with electromagnetism. Physical Review D 49: 2098-2114.ADSCrossRefGoogle Scholar
  89. 89.
    Krause, W. 1988. A Letter from Eötvös. Zeitschrift für Naturforschung 43a: 509-510.ADSGoogle Scholar
  90. 90.
    Krauss, L.M. 2008. A fifth farce. Physics Today 61 (10): 53-55.CrossRefGoogle Scholar
  91. 91.
    Krause, D.E. and E. Fischbach. 2002. Isotopic Dependence of the Casimir Force. Physical Review Letters 89: 190406.ADSCrossRefGoogle Scholar
  92. 92.
    Krause, D.E., H.T. Kloor and E. Fischbach. 1994. Multipole radiation from massive fields: Application to binary pulsar systems. Physical Review D 49: 6892-6906.ADSCrossRefGoogle Scholar
  93. 93.
    Kreuzer, L.B. 1968. Experimental measurement of the equivalence of active and passive gravitational mass. Physical Review 169:1007-1012.ADSCrossRefGoogle Scholar
  94. 94.
    Kuroda K. and N. Mio. 1989. Galilean test of the composi- tion-dependent force. In: Proceedings for the Fifth Marcel Grossmann Meeting on General Relativity, D.G. Blair and M.J. Buckingham (Eds.), World Scientific, Singapore, pp. 1569-1572.Google Scholar
  95. 95.
    Lee, T.D. and C.N. Yang. 1955. Conservation of heavy particles and generalized gauge transformations. Physical Review 98: 1501.ADSCrossRefGoogle Scholar
  96. 96.
    Lee, T.D. and C.S. Wu. 1966. Weak Interactions (Second Section) Chapter 9: Decays of Neutral K Mesons. Annual Review of Nuclear Science 16: 511-590.ADSCrossRefGoogle Scholar
  97. 97.
    Long, D.R. 1976. Experimental examination of the gravitational inverse square law. Nature 260: 417-418.ADSCrossRefGoogle Scholar
  98. 98.
    Long, D.R. 1980. Vacuum polarization and non- Newtonian gravitation. Il Nuovo Cimento 55B: 252-256.ADSCrossRefGoogle Scholar
  99. 99.
    Lusignoli, M. and A. Pugliese. 1986. Hyperphotons and K-meson decays. Physics Letters B 171: 468-470.ADSCrossRefGoogle Scholar
  100. 100.
    Maddox, J. 1986a. Newtonian gravitation corrected. Nature 319: 173.ADSCrossRefGoogle Scholar
  101. 101.
    Maddox, J. 1986. Looking for gravitational errors. Nature 322: 109.ADSCrossRefGoogle Scholar
  102. 102.
    Maddox, J. 1987. Prospects for fifth force fade. Nature 329: 283.ADSCrossRefGoogle Scholar
  103. 103.
    Maddox, J. 1988a. Making the geoid respectable again. Nature 332: 301.ADSCrossRefGoogle Scholar
  104. 104.
    Maddox, J. 1988b. Reticence and the upper limit. Nature 333: 295.ADSCrossRefGoogle Scholar
  105. 105.
    Maddox, J. 1988c. The stimulation of the fifth force. Nature 335: 393.ADSCrossRefGoogle Scholar
  106. 106.
    Maddox, J. 1991. Weak equivalence in the balance. Nature 350: 187.ADSCrossRefGoogle Scholar
  107. 107.
    Mattingly, D. 2005. Modern Tests of Lorentz Invariance. Living Reviews in Relativity 8: 5.ADSCrossRefGoogle Scholar
  108. 108.
    Milgrom, M. 1986. On the use of Eötvös-type experiments to detect medium-range forces. Nuclear Physics B277: 509-512.ADSCrossRefGoogle Scholar
  109. 109.
    Moody, M.V. and H.J. Paik. 1993. Gauss’s law test of gravity at short range. Physical Review Letters 70: 1195-1198.ADSCrossRefGoogle Scholar
  110. 110.
    Nelson P.G., D.M. Graham and R.D. Newman. 1988. A ‘fifth force’ search using a controlled local mass. In: 5th Force-Neutrino Physics, Proceedings of the XXIIIrd Rencontre de Moriond (VIIIth Moriond Workshop), O. Fackler and J. Trân Thanh Vân (Eds.), Editions Frontiéres, Gif-sur-Yvette, pp. 471-480.Google Scholar
  111. 111.
    Neufeld D.A. 1986. Upper limit on any intermediate-range force associated with baryon number. Physical Review Letters 56: 2344-2346.ADSCrossRefGoogle Scholar
  112. 112.
    Niebauer T.M., M.P. McHugh and J.E. Faller. 1987. Galilean test for the fifth force. Physical Review Letters 59: 609-612.ADSCrossRefGoogle Scholar
  113. 113.
    Olive, K.A. et al. (Particle Data Group). 2014. Review of Particle Physics. Chinese Physics C 38 (9): 1-1676.MathSciNetCrossRefGoogle Scholar
  114. 114.
    Particle Data Group. 1998. Review of Particle Physics. European Physical Journal C 3: 1-794.ADSCrossRefGoogle Scholar
  115. 115.
    Randall, L. and R. Sundrum. 1999. Large Mass Hierarchy from a Small Extra Dimension. Physical Review Letters 83: 3370-3373.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    Renner J. 1935. Kísérleti vizsgálatok a tömegvonzás és a tehetetlenség arányosságáról. Matematikai és Természettudományi Értesitö 53: 542-568.Google Scholar
  117. 117.
    Roll, P.G., R.V. Krotkov and R.H. Dicke. 1964. The equivalence of inertial and passive gravitational mass. Annals of Physics (New York) 26: 442-517.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    Romaides, A.J. et al. 1994. Second tower experiment: Further evidence for Newtonian gravity. Physical Review D 50: 3613-3617.ADSCrossRefGoogle Scholar
  119. 119.
    Romaides, A.J., R.W. Sands, E. Fischbach and C. Talmadge. 1997. Final results from the WABG tower gravity experiment. Physical Review D 55: 4532-4536.ADSCrossRefGoogle Scholar
  120. 120.
    Schwarzschild, B. 1986. Reanalysis of old Eötvös data suggests 5th some. Physics Today 39 (12): 17-20.ADSCrossRefGoogle Scholar
  121. 121.
    Simpson, W.M. R. and U. Leonhardt (eds.). 2015. Forces of the Quantum Vacuum: An Introduction to Casimir Physics, World Scientific, Singapore.Google Scholar
  122. 122.
    Speake, C.C. et al. 1990. Test of the inverse-square law of gravitation using the 300 m tower at Erie, Colorado. Physical Review Letters 65: 1967-1971.ADSCrossRefGoogle Scholar
  123. 123.
    Spero, R. et al. 1980. Test of the gravitational inverse-square law at laboratory distances. Physical Review Letters 44: 1645-1648.ADSCrossRefGoogle Scholar
  124. 124.
    Stacey, F.D. 1978. Possibility of a geophysical determination of the Newtonian gravitational constant. Geophysical Research Letters 5: 377-378.ADSCrossRefGoogle Scholar
  125. 125.
    Stacey, F.D., G.J. Tuck, S.C. Holding, A.R. Maher and D. Moms. 1981a. Constraint on the planetary scale value of the Newtonian gravitational constant from the gravity profile within a mine. Physical Review D 23: 1683-1692.ADSCrossRefGoogle Scholar
  126. 126.
    Stacey, F.D. and G.J. Tuck. 1981b. Geophysical evidence for non-Newtonian gravity. Nature 292: 230-232.ADSCrossRefGoogle Scholar
  127. 127.
    Stacey F.D. 1983. Subterranean gravity and other deep hole geophysics. In: Science Underground, AIP Conference Proceedings, No. 96, M.M. Nieto et al. (Eds.), American Institute of Physics, New York, pp. 285-297.Google Scholar
  128. 128.
    Stacey, F.D. and G.J. Tuck. 1984a. Non-Newtonian gravity: Geophysical evidence, In: Precision Measurement and Fundamental Constants II, B.N. Taylor and W.D. Phillips (Eds.), National Bureau of Standards Special Publication 617, National Bureau of Standards (U.S.), pp. 597-600.Google Scholar
  129. 129.
    Stacey, F.D. 1984b. Gravity. Science Progress 69 (273): 1-17.Google Scholar
  130. 130.
    Stacey, F.D., G.J. Tuck, S.C. Holding, G.I. Moore, B.D. Goodwin and Z. Ran. 1986. Large scale tests of the inverse square law. In: Abstracts of Contributed Papers, 11th International Conference on General Relativity and Gravitation, edited by M. MacCallum et al., International Society on General Relativity and Gravitation, p. 627.Google Scholar
  131. 131.
    Stacey F.D., G.J. Tuck, G.I. Moore. 1987a. Geophysical tests of the inverse square law of gravity. In: New and Exotic Phenomena, Proceedings of the XXIInd Rencontre de Moriond, O. Fackler and J. Trân Thanh Vân (Eds.), Editions Frontiéres, Gif-sur-Yvette, pp. 557-565.Google Scholar
  132. 132.
    Stacey, F.D., G.J. Tuck, G.I. Moore, S.C. Holding, B.D. Goodwin and R. Zhou. 1987b. Geophysics and the law of gravity. Reviews of Modern Physics 59: 157-174.ADSCrossRefGoogle Scholar
  133. 133.
    Stacey, F.D., G.J. Tuck and G.I. Moore. 1987c. Quantum gravity: Observational constraints on a pair of Yukawa terms. Physical Review D 36: 2374-2380.ADSCrossRefGoogle Scholar
  134. 134.
    Stacey F.D., G.J. Tuck and G.I. Moore. 1988a. Geophysical considerations in the fifth force controversy. Journal of Geophysical Research 93: 575-587.CrossRefGoogle Scholar
  135. 135.
    Stacey F.D. and G.J. Tuck. 1988b. Is gravity as simple as we thought? Physics World 1 (3): 29-32.CrossRefGoogle Scholar
  136. 136.
    Stacey F.D. 1990. Gravity–a possible refinement of Newton’s law. In: Frontiers of Science, A. Scott (Ed.), Blackwell, Oxford, pp. 157-170.Google Scholar
  137. 137.
    Suzuki, M. 1986. Bound on the mass and coupling of the hyperphoton by particle physics. Physical Review Letters 56: 1339-1341.ADSCrossRefGoogle Scholar
  138. 138.
    Szabó, Z. (Ed.) 1998. Three Fundamental Papers of Loränd Eötvös. Eötvös Loránd Geophysical Institute of Hungary, Budapest.Google Scholar
  139. 139.
    Talmadge, C., S.H. Aronson and E. Fischbach. 1986. Effects of Local Mass Anomalies in Eötvös-type Experiments. In: Progress in Electroweak Interactions, J. Trân Thanh Vân (Ed.), Editions Frontiéres, Gif Sur Yvette, France, Vol. 1, pp. 229-240.Google Scholar
  140. 140.
    Talmadge C., J.-P. Berthias, R.W. Hellings and E.M. Standish. 1988. Model-independent constraints on possible modifications of Newtonian gravity. Physical Review Letters 61: 159-1162.CrossRefGoogle Scholar
  141. 141.
    Thieberger, P. 1986. Hypercharge fields and Eötvös-type experiments. Physical Review Letters 56: 2347-2349.ADSCrossRefGoogle Scholar
  142. 142.
    Thieberger, P. 1987. Search for a substance-dependent force with a new differential accelerometer. Physical Review Letters 58: 1066-1069.ADSCrossRefGoogle Scholar
  143. 143.
    Thodberg, H.H. 1986. Comment on the sign in the reanalysis of the Eötvös experiment. Physical Review Letters 56: 2423.ADSCrossRefGoogle Scholar
  144. 144.
    Thomas, J. et al. 1989. Testing the inverse-square law of gravity on a 465 m tower. Physical Review Letters 63: 1902-1905.ADSCrossRefGoogle Scholar
  145. 145.
    Touboul, P. and M. Rodrigues. 2001. The MICROSCOPE space mission. Classical and Quantum Gravity 18: 2487-2498.ADSzbMATHCrossRefGoogle Scholar
  146. 146.
    Weinberg, S. 1964. Do hyperphotons exist? Physical Review Letters 13: 495-497.ADSCrossRefGoogle Scholar
  147. 147.
    Will, C.M. 1993. Theory and Experiment in Gravitational Physics (Rev. Ed.) Cambridge University Press, New York.Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Physics and AstronomyPurdue UniversityWest LafayetteUSA

Personalised recommendations