Advertisement

The European Physical Journal H

, Volume 40, Issue 4–5, pp 489–526 | Cite as

The development of ensemble theory

A new glimpse at the history of statistical mechanics
  • Hajime InabaEmail author
Article

Abstract

This paper investigates the history of statistical mechanics from the viewpoint of the development of the ensemble theory from 1871 to 1902. In 1871, Ludwig Boltzmann introduced a prototype model of an ensemble that represents a polyatomic gas. In 1879, James Clerk Maxwell defined an ensemble as copies of systems of the same energy. Inspired by H.W. Watson, he called his approach “statistical”. Boltzmann and Maxwell regarded the ensemble theory as a much more general approach than the kinetic theory. In the 1880s, influenced by Hermann von Helmholtz, Boltzmann made use of ensembles to establish thermodynamic relations. In Elementary Principles in Statistical Mechanics of 1902, Josiah Willard Gibbs tried to get his ensemble theory to mirror thermodynamics, including thermodynamic operations in its scope. Thermodynamics played the role of a “blind guide”. His theory of ensembles can be characterized as more mathematically oriented than Einstein’s theory proposed in the same year. Mechanical, empirical, and statistical approaches to foundations of statistical mechanics are presented. Although it was formulated in classical terms, the ensemble theory provided an infrastructure still valuable in quantum statistics because of its generality.

Keywords

Statistical Mechanic Canonical Ensemble Microcanonical Ensemble Ergodic Hypothesis Elementary Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiko, S. 2004. Ainsyutain soutaisei-riron no tanjou (The birth of Einstein’s relativity theory). Koudan-sha, Tokyo (in Japanese)Google Scholar
  2. 2.
    Anon. 1885. Sitzung vom 17. Juli 1884. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe. 2 . Abt. 90: 201–205 Google Scholar
  3. 3.
    Badino, M. 2011. Mechanistic slumber vs. statistical insomnia: The early history of Boltzmann’s H-theorem (1868–1877). The European Physical Journal H 36: 353–378 CrossRefADSGoogle Scholar
  4. 4.
    Baracca, A. and R. Rechtman S. 1985. Einstein’s statistical mechanics. Revista Mexicana de Física 31 695–722MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bernhardt, H. 1971. Über die Entwicklung und Bedeutung der Ergodenhypothese in den Anfängen der statistischen Mechanik. NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin 8: 13–25MathSciNetGoogle Scholar
  6. 6.
    Bierhalter, G. 1981. Zu Hermann von Helmholtzens mechanischer Grundlegung der Wärmelehre aus dem Jahre 1884. Archive for History of Exact Sciences 25: 71–84 CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Bierhalter, G. 1987. Wie erfolgreich waren die im 19. Jahrhundert betriebenen Versuche einer mechanischen Grundlegung des zweiten Hauptsatzes der Thermodynamik? Archive for History of Exact Sciences 37: 77–99CrossRefMathSciNetGoogle Scholar
  8. 8.
    Bierhalter, G. 1993. Helmholtz’s mechanical foundation of thermodynamics. Trans. D. Cahan. In Hermann von Helmholtz and the foundations of nineteenth-century science, edited by D. Cahan. University of California Press, Berkeley, pp. 433–458Google Scholar
  9. 9.
    Blackmore, J. (Ed.). 1995. Ludwig Boltzmann: His later life and philosophy, 1900–1906. 2 Vols. Kluwer Academic Publishers, DordrechtGoogle Scholar
  10. 10.
    Boltzmann, L. 1868. Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe 58: 517–561 Google Scholar
  11. 11.
    Boltzmann, L. 1871a. Über das Wärmegleichgewicht zwischen mehratomigen Gasmolekülen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe 63: 397–418 Google Scholar
  12. 12.
    Boltzmann, L. 1871b. Einige allgemeine Sätze über Wärmegleichgewicht. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe 63: 679–711 zbMATHGoogle Scholar
  13. 13.
    Boltzmann, L. 1881. Referat zu J.C. Maxwells, Ueber Boltzmann’s Theorem, betreffend die mittlere Vertheilung der lebendigen Kraft in einem System materieller Punkte“ (Cambridge Phil. Trans. 13, part 3, p. 547–570. 1879). Beiblätter zu den Annalen der Physik und Chemie 5: 403–417 Google Scholar
  14. 14.
    Boltzmann, L. 1882. On Boltzmann’s Theorem on the average distribution of energy in a system of material points. Philosophical Magazine 14: 299–312 CrossRefGoogle Scholar
  15. 15.
    Boltzmann, L. 1885a. Über die Eigenschaften monocyclischer und anderer damit verwandter Systeme. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe. 2. Abt. 90: 231–245 Google Scholar
  16. 16.
    Boltzmann, L. 1885b. Ueber die Eigenschaften monocyklischer und anderer damit verwandter Systeme. Journal für die reine und angewandte Mathematik 98: 68–94 MathSciNetGoogle Scholar
  17. 17.
    Boltzmann, L. 1887. Ueber die mechanischen Analogien des zweiten Hauptsatzes der Thermodynamik. Journal für die reine und angewandte Mathematik 100: 201–212 MathSciNetGoogle Scholar
  18. 18.
    Boltzmann, L. 1898. Vorlesungen über Gastheorie. 2 Vols. Johann Ambrosius Barth, LeipzigGoogle Scholar
  19. 19.
    Boltzmann, L. 1964. Lectures on gas theory. Translated by S.G. Brush. University of California Press, Berkeley and Los AngelesGoogle Scholar
  20. 20.
    Bordoni, S. 2013. Routes towards an abstract thermodynamics in the late nineteenth century. The European Physical Journal H 38: 617–660 CrossRefADSGoogle Scholar
  21. 21.
    Broda, E. 1957. Ludwig Boltzmann: Mensch, Physiker, Philosoph. Deutscher Verlag der Wissenschaften, Berlin Google Scholar
  22. 22.
    Brown, H.R., W. Myrvold, and J. Uffink. 2009. Boltzmann’s H-theorem, its discontents, and the birth of statistical mechanics. Studies in History and Philosophy of Modern Physics 40: 174–191 CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Brush, S.G. 1964. Translator’s introduction to Lectures on gas theory by L. Boltzmann. University of California Press, Berkeley and Los AngelesGoogle Scholar
  24. 24.
    Brush, S.G. 1983. Statistical physics and the atomic theory of matter: From Boyle and Newton to Landau and Onsager. Princeton University Press, PrincetonGoogle Scholar
  25. 25.
    Brush, S.G. 1986. The kind of motion we call heat: A history of the kinetic theory of gases in the 19th century. 2 Vols. North-Holland, AmsterdamGoogle Scholar
  26. 26.
    Cercignani, C. 1998. Ludwig Boltzmann: The man who trusted atoms. Oxford University Press, OxfordGoogle Scholar
  27. 27.
    Donnan, F.G. and A. Haas (Eds.). 1936. Thermodynamics. Vol. I of A commentary on the scientific writings of J. Willard Gibbs, Yale University Press, New Haven Google Scholar
  28. 28.
    Dugas, R. 1959. La théorie physique au sens de Boltzmann: et ses prolongements modernes. Éditions du Griffon, NeuchâtelGoogle Scholar
  29. 29.
    Ehrenfest, P. and T. Ehrenfest. 1911. Begriffliche Grundlagen der statistischen Auffassung in der Mechanik. In Mechanik. Vol. 4.4 of Encyklopädie der mathematischen Wissenschaften: mit Einschluss ihrer Anwendungen, edited by F. Klein and F. Conrad. B.G. Teubner, Leipzig, pp. 3–90 Google Scholar
  30. 30.
    Einstein, A. 1902. Kinetische Theorie des Wärmegleichgewichtes und des zweiten Hauptsatzes der Thermodynamik. Annalen der Physik 9: 417–433 CrossRefADSzbMATHGoogle Scholar
  31. 31.
    Einstein, A. 1903. Eine Theorie der Grundlagen der Thermodynamik. Annalen der Physik 11: 170–187 CrossRefADSzbMATHGoogle Scholar
  32. 32.
    Einstein, A. 1911. Bemerkungen zu den P. Hertzschen Arbeiten: Über die mechanischen Grundlagen der Thermodynamik. Annalen der Physik 34: 175–176CrossRefADSzbMATHGoogle Scholar
  33. 33.
    Epstein, P.S. 1936. Critical appreciation of Gibbs’ statistical mechanics. In Theoretical physics. Vol. II of A commentary on the scientific writings of J. Willard Gibbs, edited by A. Haas. Yale University Press, New Haven, pp. 461–520Google Scholar
  34. 34.
    Ezawa, H. 1979. Einstein’s contribution to statistical mechanics, classical and quantum. Japanese Studies in the History of Science 18: 27–72 MathSciNetGoogle Scholar
  35. 35.
    Fasol-Boltzmann, I.M. and G.L. Fasol (Eds.). 2006. Ludwig Boltzmann (1844–1906): zum hundertsten Todestag. Springer, Wien Google Scholar
  36. 36.
    Fowler, R.H. 1938. Statistical mechanics: The theory of the properties of matter in equilibrium, 2nd edn. University Press, CambridgeGoogle Scholar
  37. 37.
    Gallavotti, G. 1995. Ergodicity, ensembles, irreversibility in Boltzmann and beyond. Journal of Statistical Physics 78: 1571–1589 CrossRefADSMathSciNetzbMATHGoogle Scholar
  38. 38.
    Gallavotti, G. 1999. Statistical mechanics: A short treatise. Springer, BerlinGoogle Scholar
  39. 39.
    Gallavotti, G. 2014. Nonequilibrium and irreversibility. SpringerGoogle Scholar
  40. 40.
    Garber, E. 1966. Maxwell, Clausius and Gibbs: Aspects of the development of kinetic theory and thermodynamics. Ph.D. diss., Case Institute of TechnologyGoogle Scholar
  41. 41.
    Garber, E. 1973. Aspects of the introduction of probability into physics. Centaurus 17: 11–39 CrossRefADSMathSciNetGoogle Scholar
  42. 42.
    Garber, E., S.G. Brush, and C.W.F. Everitt (Eds.). 1986. Maxwell on molecules and gases. The MIT Press, Cambridge, Mass. Google Scholar
  43. 43.
    Garber, E., S.G. Brush, and C.W.F. Everitt (Eds.). 1995. Maxwell on heat and statistical mechanics: On “avoiding all personal enquiries” of molecules. Lehigh University Press, BethlehemGoogle Scholar
  44. 44.
    Gearhart Jr., C.A. 1983. Gibbs, Liouville’s theorem, and the American frontier. American Journal of Physics 51: 81–82 CrossRefADSGoogle Scholar
  45. 45.
    Gearhart Jr., C.A. 1990. Einstein before 1905: The early papers on statistical mechanics. American Journal of Physics 58: 468–480 CrossRefADSMathSciNetGoogle Scholar
  46. 46.
    Gibbs, J.W. 1884. On the fundamental formula of statistical mechanics, with applications to astronomy and thermodynamics. In Proceedings of the American Association for the Advancement of Sciences, thirty-third meeting held at Philadelphia, Penn. September, 1884, edited by F.W. Putnam. The Salem Press, Salem, pp. 57–58Google Scholar
  47. 47.
    Gibbs, J.W. 1889. Rudolf Julius Emanuel Clausius. Proceedings of the American Academy of Arts and Sciences new ser. 16: 458–465Google Scholar
  48. 48.
    Gibbs, J.W. 1902. Elementary principles in statistical mechanics. Yale University Press, New HavenGoogle Scholar
  49. 49.
    Haas, A. (Ed.). 1936a. Theoretical physics. Vol. II of A Commentary on the scientific writings of J. Willard Gibbs. Yale University Press, New HavenGoogle Scholar
  50. 50.
    Haas, A. (Ed.). 1936b. Gibbs and the statistical conception of physics. In Theoretical physics. Vol. II of A commentary on the scientific writings of J. Willard Gibbs, edited by A. Haas. Yale University Press, New Haven, pp. 127–160Google Scholar
  51. 51.
    Haas, A. (Ed.). 1936c. The chief results of Gibbs’ statistical mechanics. In Theoretical physics. Vol. II of A commentary on the scientific writings of J. Willard Gibbs, edited by A. Haas. Yale University Press, New Haven, pp. 179–296Google Scholar
  52. 52.
    Haas, A. (Ed.). 1936d. Special commentary on Gibbs’ statistical mechanics. In Theoretical physics. Vol. II of A commentary on the scientific writings of J. Willard Gibbs, edited by A. Haas. Yale University Press, New Haven, pp. 297–460Google Scholar
  53. 53.
    Helmholtz, H. v. 1884a. Studien zur Statik monocyklischer Systeme. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin 1884: 159–177, 311–319, and 755–760.Google Scholar
  54. 54.
    Helmholtz, H. v. 1884b. Prinzipien der Statik monocyklischer Systeme. Journal für die reine und angewandte Mathematik 97: 111–140 and 317–336. MathSciNetGoogle Scholar
  55. 55.
    Hiromasa, N. 2006. Formation of the concept of the Gibbs ensemble from the 1900’s to the 1910’s. The Bulletin of Liberal Arts Education Center, Tokai University 26: 49–56 (in Japanese)Google Scholar
  56. 56.
    Hiroshige, T. 1968. Butsurigakushi I (History of Physics I), Baifukan, Tokyo (in Japanese)Google Scholar
  57. 57.
    Holton, G. 1980. Einstein’s scientific program: The formative years. In Some strangeness in the proportion: A centennial symposium to celebrate the achievements of Albert Einstein, edited by H. Woolf. Addison-Wesley Pub. Co., Advanced Book Program, Reading, pp. 49–65Google Scholar
  58. 58.
    Inaba, H. 2010. Gibbs’ theory of statistical mechanics as a physicochemical theory. Kagakushi-Kenkyu 49: 1–10 (in Japanese) Google Scholar
  59. 59.
    Inoue, T. 1989. Planck’s and Boltzmann’s theories of dissociation equilibrium (Kairi-heikou-ron ni miru puranku to borutsuman no riron to houhou), Butsurigaku-shi: Sono riron to tenbou 4: 1–18 (in Japanese) Google Scholar
  60. 60.
    Klein, F. and M. Conrad (Eds.). 1907–1914. Mechanik. Vol. 4.4 of Encyklopädie der mathematischen Wissenschaften: mit Einschluss ihrer Anwendungen. B. G. Teubner, Leipzig Google Scholar
  61. 61.
    Klein, M.J. 1967. Thermodynamics in Einstein’s thought. Science 157 509–516CrossRefADSGoogle Scholar
  62. 62.
    Klein, M.J. 1969. Gibbs on Clausius. Historical Studies in the Physical Sciences 1: 127–149 CrossRefGoogle Scholar
  63. 63.
    Klein, M.J. 1970. Paul Ehrenfest: The making of a theoretical physicist. North-Holland, AmsterdamGoogle Scholar
  64. 64.
    Klein, M.J. 1973. Mechanical explanations at the end of the nineteenth century. Centaurus 17: 58–82 CrossRefADSGoogle Scholar
  65. 65.
    Klein, M.J. 1974. Einstein, Boltzmann’s principle, and the mechanical world view. In The XIVth international congress of the history of science. Tokyo & Kyoto, Japan 19–27 August, 1974. Texts of symposia (Proceedings, no. 1), Science Council of Japan, pp. 183–194 Google Scholar
  66. 66.
    Klein, M.J. 1978. The early papers of J. Willard Gibbs: A transformation of thermodynamics. In Human implications of scientific advance: Proceedings of the XVth International Congress of the History of Science, Edinburgh, 10–15 August 1977, edited by E.G. Forbes. Edinburgh University Press, Edinburgh, pp. 330–341Google Scholar
  67. 67.
    Klein, M.J. 1983. The scientific style of Josiah Willard Gibbs. In Springs of scientific creativity: Essays on founders of modern science, edited by R. Aris, H.T. Davis, and R.H. Stuewer. University of Minnesota Press, Minneapolis, pp. 142–162Google Scholar
  68. 68.
    Klein, M.J. 1987. Some historical remarks on the statistical mechanics of Josiah Willard Gibbs. In From ancient omens to statistical mechanics: Essays on the exact sciences presented to Asger Aaboe, edited by J.L. Berggren and B.R. Goldstein. University Library, Copenhagen, pp. 281–289. Google Scholar
  69. 69.
    Klein, M.J. 1990a. The physics of J. Willard Gibbs in his time. Physics Today 43: 40–48.CrossRefGoogle Scholar
  70. 70.
    Klein, M.J. 1990b. The physics of J. Willard Gibbs in his time. In Proceedings of the Gibbs symposium. Yale University, May 15–17, 1989, edited by D.G. Caldi and G.D. Mostow. American Mathematical Society and American Institute of Physics, pp. 1–21Google Scholar
  71. 71.
    Knudsen, O. 1987. The influence of Gibbs’s European studies on his later work. In From ancient omens to statistical mechanics: Essays on the exact sciences presented to Asger Aaboe, edited by J.L. Berggren and B.R. Goldstein. University Library, Copenhagen, pp. 271–281 Google Scholar
  72. 72.
    Kobayashi, T. 1996. A note on A. Einstein and classical physics (A. Einstein to koten butsurigaku ni kansuru noto). Butsurigaku-shi: Sono kadai to tenbou 9: 36–43 (in Japanese) Google Scholar
  73. 73.
    Kox, A. 2014. Einstein on statistical physics: Fluctuations and atomism. In The Cambridge companion to Einstein, edited by M. Janssen and C. Lehner. Cambridge University Press, New York, pp. 103–116 Google Scholar
  74. 74.
    Kragh, H. 1993. Between physics and chemistry: Helmholtz’s route to a theory of chemical thermodynamics. In Hermann von Helmholtz and the foundations of nineteenth-century science, edited by D. Cahan. University of California Press, Berkeley, pp. 403–432Google Scholar
  75. 75.
    Krüger, L. 1981. Reduction as a problem. In Probabilistic thinking, thermodynamics and the interaction of the history and philosophy of science, edited by J. Hintikka, D. Gruender and E. Agazzi. Reidel, Holland, pp. 147–174Google Scholar
  76. 76.
    Kuhn, T.S. 1987. Black-body theory and the quantum discontinuity, 1894–1912. The University of Chicago Press, Chicago Google Scholar
  77. 77.
    Landau, L.D. and E.M. Lifshitz. 1980. Statistical physics. Vol. 5 of Courses of theoretical physics, 3rd edn. Elsevier, translated by J.B. Sykes and M.J. Kearsley Google Scholar
  78. 78.
    Lorentz, H.A. 1907. Über den zweiten Hauptsatz der Thermodynamik und dessen Beziehung zu den Molekulartheorien. In Abhandlungen über theoretische Physik. Teubner, Leipzig, pp. 202–298Google Scholar
  79. 79.
    Maxwell, J.C. 1879. Review of A Treatise on the Kinetic Theory of Gases by Henry William Watson. Nature 18: 242–246 Google Scholar
  80. 80.
    Maxwell, J.C. 1879. On Boltzmann’s theorem on the average distribution of energy in a system of material points. Transactions of the Cambridge Philosophical Society 12: 547–570 Google Scholar
  81. 81.
    Mehra, J. 1975. Einstein and the foundation of statistical mechanics. Physica 79A: 447–477 CrossRefADSGoogle Scholar
  82. 82.
    Mehra, J. 1998. Josiah Willard Gibbs and the foundations of statistical mechanics. Foundations of Physics 28: 1785–1815 CrossRefMathSciNetGoogle Scholar
  83. 83.
    MS Vault Gibbs. Beinecke Rare Book & Manuscript Library. Yale UniversityGoogle Scholar
  84. 84.
    Navarro, L. 1998. Gibbs, Einstein and the foundations of statistical mechanics. Archive for History of Exact Sciences 53: 147–180 CrossRefMathSciNetzbMATHGoogle Scholar
  85. 85.
    Plato, J. v. 1992. Boltzmann’s ergodic hypothesis. Archive for History of Exact Sciences 44: 71–89 Google Scholar
  86. 86.
    Putnam, F.W. (Ed.). 1884. Proceedings of the American Association for the Advancement of Sciences, thirty-third meeting held at Philadelphia, Penn. September, 1884. The Salem Press, Salem Google Scholar
  87. 87.
    Renn, J. 1997. Einstein’s controversy with Drude and the origin of statistical mechanics: A new glimpse from the “Love Letters”. Archive for History of Exact Sciences 51: 315–354 CrossRefMathSciNetzbMATHGoogle Scholar
  88. 88.
    Renn, J. 2005. Einstein’s invention of Brownian motion. Annalen der Physik 14: 23–37 CrossRefADSMathSciNetGoogle Scholar
  89. 89.
    Renn, J. and R. Rynasiewicz. 2014. Einstein’s Copernican revolution. In The Cambridge companion to Einstein, edited by M. Janssen and C. Lehner. Cambridge University Press, New York, pp. 38–71 Google Scholar
  90. 90.
    Schiemann, G. 1997. Wahrheitsgewissheitsverlust: Hermann von Helmholtz’ Mechanismus im Anbruch der Moderne: eine Studie zum Übergang von klassischer zu moderner Naturphilosophie. Wiss. Buchges, DarmstadtGoogle Scholar
  91. 91.
    Sklar, L. 1993. Physics and chance: Philosophical issues in the foundations of statistical mechanics. Cambridge University Press, CambridgeGoogle Scholar
  92. 92.
    Stachel, J. 1989a. Einstein on the foundations of statistical mechanics. In The Swiss years: Writings, 1909–1911. Vol. 3 of The collected papers of Albert Einstein, edited by M.J. Klein, A.J. Kox, J. Renn and R. Schulmann. Princeton University Press, Princeton, pp. 41–55 Google Scholar
  93. 93.
    Stachel, J. 1989b. Introduction. In The Swiss years: Writings, 1909–1911. Vol. 3 of The collected papers of Albert Einstein, edited by M.J. Klein, A.J. Kox, J. Renn and R. Schulmann. Princeton University Press, Princeton, pp. xvi–xxixGoogle Scholar
  94. 94.
    Tolman, R.C. 1938. The principles of statistical mechanics. Clarendon Press, OxfordGoogle Scholar
  95. 95.
    Uffink, J. 2006. Insuperable difficulties: Einstein’s statistical road to molecular physics. Studies in History and Philosophy of Modern Physics 37: 36–70 CrossRefMathSciNetzbMATHGoogle Scholar
  96. 96.
    Watson, H.W. 1876. A treatise on the kinetic theory of gases. Clarendon Press, OxfordGoogle Scholar
  97. 97.
    Wheeler, L.P. 1951. Josiah Willard Gibbs: The history of a great mind. Yale University Press, New HavenGoogle Scholar
  98. 98.
    Wilson, E.B. 1945. A letter from Lord Rayleigh to J. Willard Gibbs and his reply. Proceedings of the National Academy of Sciences of the United States of America 31: 34–38 CrossRefADSGoogle Scholar
  99. 99.
    Yamamoto, Y. 2009. Vol. 3 of Netsugaku-shiso no shiteki-tenkai: Netsu to entoropi (Historical development of thermodynamic ideas: heat and entropy). Chikuma-shobo, Tokyo (in Japanese) Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.The University of TokyoTokyoJapan

Personalised recommendations