The European Physical Journal H

, Volume 40, Issue 3, pp 337–373 | Cite as

On pendulums and air resistance

The mathematics and physics of Denis Diderot
  • Sílvio R. DahmenEmail author


In this article Denis Diderot’s Fifth Memoir of 1748 on the problem of a pendulum damped by air resistance is discussed in its historical as well as mathematical aspects. Diderot wrote the Memoir in order to clarify an assumption Newton made without further justification in the first pages of the Principia in connection with an experiment to verify the Third Law of Motion using colliding pendulums. To explain the differences between experimental and theoretical values, Newton assumed the bob was traversed. By giving Newton’s arguments a mathematical scaffolding and recasting his geometrical reasoning in the language of differential calculus, Diderot provided a step-by-step solution guide to the problem. He also showed that Newton’s assumption was equivalent to having assumed F R proportional the bob’s velocity v, when in fact he believed it should be replaced by F R v 2. His solution is presented in full detail and his results are compared to those obtained from a Lindstedt-Poincaré approximation for an oscillator with quadratic damping. It is shown that, up to a prefactor, both results coincide. Some results that follow from his approach are presented and discussed for the first time. Experimental evidence to support Diderot’s or Newton’s claims is discussed together with the limitations of their solutions. Some misprints in the original memoir are pointed out.


Reynolds Number Superconducting Gravimeter Mathematical Pendulum Quadratic Drag Quarter Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13129_2015_153_MOESM1_ESM.pdf (521 kb)
Supplementary material, approximately 228 KB.


  1. d’Alembert, J. 1747. Recherches sur la courbe que forme une corde tendue mise en vibration. Mem. Acad. Sci. Berlin 3: 214-229.Google Scholar
  2. d’Alembert, J. 1780. On the Calculus of Probabilities, Opuscules Mathématiques. Editions CNRS, Paris, 2011, Vol. II, 52nd Memoir, pp. 39-60.Google Scholar
  3. d’Alembert, J. 1761. Reflections on the Calculus of Probabilities, Opuscules Mathématiques. Editions CNRS, Paris, 2011, Vol. II, 10th Memoir, pp. 1-25.Google Scholar
  4. d’Alembert, J. 1768. Extracts of Letters on the Calculus of Probabilities and on the Calculus Related to Inoculation, Opuscules Mathématiques. Editions CNRS, Paris, 2011, Vol. V, 27th Memoir, pp. 283-310.Google Scholar
  5. d’Alembert, J. 1768. On the Analysis of Games, Opuscules Mathématiques. Editions CNRS, Paris, 2011, Vol. IV, 23rd Memoir, pp. 79-92.Google Scholar
  6. d’Alembert, J. 1784. Croix ou Pile. In Encyclopédie, ou Dictionaire Raisonné des Sciences, des Arts et des Métiers. Paris, Vol. 4, pp. 512-513.Google Scholar
  7. Ballstadt, K. 2008. Diderot: Natural Philosopher, SVEC 2008:09. Voltaire Foundation, Oxford.Google Scholar
  8. Bessel, F.W. 1828. Untersuchungen über die Länge des einfachen Secundenpendels, Druckerei der Königlichen Akademie der Wissenschaften, Berlin (reprint Verlag von Wilhelm Engelmann, Leipzig, 1889).Google Scholar
  9. Cannon, J.T., Dostrovsky S., 1981. The Evolution of Dynamics: Vibration Theory from 1687 to 1742. Springer-Verlag, New York.Google Scholar
  10. Coolidge, J.L. 1949. The Mathematics of Great Amateurs, 2nd edition. Clarendon Press, Oxford, 1990, pp. 178-185.Google Scholar
  11. Cvetićanin, L. 2009. Oscillator with strong quadratic damping force. Publications de l’Institut Mathématique, Nouvelle série 85 (99): 119-130.Google Scholar
  12. Dahmen, S.R. 2014. The Mathematics and Physics of Diderot. On Involutes, in preparation.Google Scholar
  13. Darrigol, O. 2005. Worlds of Flow: A History of Hydrodynamics from the Bernoullis to Prandtl. Oxford University Press, Chap. 7.Google Scholar
  14. Darrigol, O., Frisch, U. 2009. From Newton’s Mechanics to Euler’s Equations. Physica D: Nonlinear Phenomena 237(14-17): 1855-1869 and references therein.MathSciNetCrossRefADSGoogle Scholar
  15. Daston, L.J. 1979. D’Alembert’s Critique of Probability Theory. Historia Mathematica 6: 259-279.zbMATHMathSciNetCrossRefGoogle Scholar
  16. Diderot, D. 1748. Mémoires sur différents sujets de Mathématiques. Durant et Pissot, Paris. Reprinted in Oeuvres complètes : édition critique et annotée. V. 2: Philosophie et mathématique: Idées I. R. Niklaus et al. (eds.). Herrmann, Paris, 1975, pp. 231-338.Google Scholar
  17. Diderot, D. 1761. Noveaux Mémoires sur Différents Sujets de Mathématiques in Oeuvres complètes : édition critique et annotée. V. 2: Philosophie et mathématique: Idées I. R. Niklaus et al. (eds.). Herrmann, Paris, 1975, pp. 339-361.Google Scholar
  18. Diderot, D. 1774. Réfutation suivie de l’ouvrage d’Helvétius intitulé l’Homme. Éditions Gallimard, Paris, 2010.Google Scholar
  19. Diderot, D. 1975. Prèmieres notions sur les mathématiques a l’usage des enfants ou premier livre classique du 1er cours d’études in Oeuvres complètes : édition critique et annotée. V. 2: Philosophie et mathématique: Idées I. R. Niklaus et al. (eds.). Herrmann, Paris, 1975, p. 367.Google Scholar
  20. Euler, L. 1739. Tentamen novae theoriae musicae ex certissimis harmoniae principiis dilucide expositae. Petropoli (St. Petersburg), ex Typographia Academiae Scientiarum. Reprinted in Smith, C.S. 1960. Leonhard Euler’s Tentamen novae theoriae musicae. A Translation and Commentary. Indiana University Press, Bloomington.Google Scholar
  21. Flügge, S. 1967. Lehrbuch der Theoretischen Physik Band II. Springer Verlag, Heidelberg, pp. 49-53.Google Scholar
  22. Fourier, J. 1807. Mémoire sur la propagation de la chaleur dans les corps solides, Nouveau Bulletin des sciences par la Société Philomatique de Paris I (6). Bernard, Paris, March 1808, pp. 112-116; Reprinted in Oeuvres complètes, Paris, tome 2, 1890, pp. 215-221.Google Scholar
  23. Gauld, C.F. 2009. Newton’s Use of the Pendulum to Investigate Fluid Resistance: A Case Study and some Implications for Teaching About the Nature of Science. Science and Education 18: 383-400.CrossRefADSGoogle Scholar
  24. Gauld, C.F. 2010. Newton’s Investigation of the Resistance to Moving Bodies in Continuous Fluids and the Nature of ‘Frontier Science’. Science and Education 19: 939-961.CrossRefADSGoogle Scholar
  25. Gay, P. 1966. The Enlightenment: An Interpretation. The Rise of Modern Paganism. Vintage Books, New York, p. 14.Google Scholar
  26. Good, R.H. 2001. Elliptic Integrals, the forgotten functions. Eur. J. Phys. 22: 119-126.zbMATHMathSciNetCrossRefGoogle Scholar
  27. Huygens, C. 1673. Horologium Oscillatorium: sive de motu pendulorum ad horologia aptato demonstrationes geometricae. Reprinted in Culture et Civilisation, Bruxelles, 1966.Google Scholar
  28. Kleiner, I. 1989. Evolution of the Function Concept: a Brief Survey. The College Mathematics Journal 20/4: 282-300.CrossRefGoogle Scholar
  29. Krakeur, L.G., Krueger, R.L. 1941. The Mathematical Writings of Diderot. Isis 33/2: 219-232.MathSciNetCrossRefGoogle Scholar
  30. Lindstedt, A. 1882. Beitrag zur Integration der Differentialgleichungen der Störungstheorie. Abh. K. Akad. Wiss. St. Petersburg 4: 31.Google Scholar
  31. Linz, S.J. 1995. A simple nonlinear system: the pendulum with quadratic friction. Eur. J. Phys. 16: 67-72.CrossRefGoogle Scholar
  32. Loria, G. 1930. Curve piane speciali. Milano, Vol. II, p. 125.Google Scholar
  33. Matthews, M.R., Gauld, C.F., Stinner, A. 2005. The Pendulum: Scientific, Historical, Philosophical and Educational Perspectives. Springer, pp. 139-150.Google Scholar
  34. Mayer, J. 1975. Oeuvres Completes de Diderot: Oeuvres Mathématiques. Hermann, Paris, Vol. 2.Google Scholar
  35. Nelson, R.A., Olsson, M.G. 1986. The pendulum – rich physics from a simple system. Am. J. Phys. 54/2: 112-121.CrossRefADSGoogle Scholar
  36. Newton, I. 1687. Principia Mathematica Philosophiae Naturalis. Translated by A. Motte as Mathematical Principles of Natural Philosophy. University of California Press, Los Angeles.Google Scholar
  37. Plana, J. 1835. Mémoire sur le Mouvement d’un Pendule dans un Millieu Résistant. L’Imprimérie Royale. Credited as Jean Plana, Turin.Google Scholar
  38. Poincare, H. 1893. Les Méthodes Nouvelles de la Mécanique Célèste II. Gauthier-Villars Imprimieus Librarie, Paris, pp. 123-128.Google Scholar
  39. Rameau, J.-P. 1722. Traité de l’harmonie réduite à ses principes naturels. Ballard, Paris; reprint ed. in Jean-Philippe Rameau [1683–1764] Complete Theoretical Writings, Miscellanea. American Institute of Musicology, Münster, 1967, vol. 1.Google Scholar
  40. Ravetz, J.R. 1961. Vibrating Strings and Arbitrary Functions, in The Logical of Personal Knowledge: Essays presented to M. Polanyi on his Seventieth Birthday. The Free Press, pp. 71-88.Google Scholar
  41. Reynolds, O. 1883. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans. Roy. Soc. 174: 935-982.zbMATHCrossRefGoogle Scholar
  42. Samuelson, P.A. 1977. St. Petersburg Paradoxes: Defanged, Dissected, and Historically Described. J. of Economic Literature 15: 24-55.Google Scholar
  43. Schulze, M. 1782. Sur les horloges à pendule. Premier Mémoire, Noveaux Mémoire de l’Académie Royale des Sciences et Belles Lettres (Königliche Akademie der Wissenschaften, Berlin), Decker, pp. 349-350.Google Scholar
  44. Schulze, M. 1782. Sur les horloges à pendule. Second Mémoire (Königliche Akademie der Wissenschaften, Berlin), pp. 359-375.Google Scholar
  45. Smith, G.E. 1998. Newton’s study of fluid dynamics. Int. J. Eng. Sci. 36: 1377-1390 and references therein.zbMATHCrossRefGoogle Scholar
  46. Stokes, G.G. 1851. On the Effect of the Internal Friction of Fluids on the Motion of Pendulums. Trans. Cambridge Philos. Soc. 9: 8-106.ADSGoogle Scholar
  47. Swijtink, Z.G. 1986. D’Alembert and the Maturity of Chances. Stud. Hist. Phil. Sci. 17 (3): 327-349.zbMATHMathSciNetCrossRefGoogle Scholar
  48. Le Seur, T., Jacquier, F. 1822. Isaaci Newtoni Philosophiae Naturalis Principia Mathematica, Perpetuis Commentariis Illustrata. Glasgow, 1822, Vol. I, pp. 37-39.Google Scholar
  49. Taylor, B., 1713. De motu nervi tensi. Phil. Trans. London 28: 26-32.CrossRefADSGoogle Scholar
  50. Truesdell C., 1960. The Rational Mechanics of Elastic or Flexible Bodies, 1638–1788. Introduction to vols. X and XI of Leonhardi Euleri Opera Omnia, Seriei Secundae. Zürich, pp. 129-281.Google Scholar
  51. Virtanen, H. 2006. Studies of Earth Dynamics with the Superconducting Gravimeter, Ph.D. thesis. Publication 133 of the Finnish Geodetic Institute, Helsinki.Google Scholar
  52. Wagner, E. 1867. Mémoire sur le Pendule et le Balancier considéré comme Régulateurs des Instruments à Réguler le Temps. Typographie de Ch. Maréchal, Paris.Google Scholar
  53. White, F.M. 1974. Viscuous Fluid Flow. McGraw-Hill, New York, p. 209.Google Scholar
  54. Wilson, A.M. 1972. Diderot. Oxford University Press, Oxford.Google Scholar
  55. Wolf, C. 1889. Mémoires Sur Le Pendule, Précédés D’une Bibliographie. Gauthier-Villars, Paris.Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations