The European Physical Journal H

, Volume 38, Issue 4, pp 507–517 | Cite as

Who discovered the magnetocaloric effect?

Warburg, Weiss, and the connection between magnetism and heat
  • Anders SmithEmail author


A magnetic body changes its thermal state when subjected to a changing magnetic field. In particular, if done under adiabatic conditions, its temperature changes. For the past 15 years the magnetocaloric effect has been the focus of significant research due to its possible application for efficient refrigeration near room temperature. At the same time, it has become common knowledge within the magnetic refrigeration research community that the magnetocaloric effect was discovered by the German physicist E. Warburg in 1881. We re-examine the original literature and show that this is a misleading reading of what Warburg did, and we argue that the discovery of the effect should instead be attributed to P. Weiss and A. Piccard in 1917.


Curie Temperature Heat Pump Coercive Force Heat Engine Magnetocaloric Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barclay, J.A., O. Moze and L. Paterson. 1979. A reciprocating magnetic refrigerator for 2-4 K operation: Initial results. J. Appl. Phys. 50: 5870-5877 ADSCrossRefGoogle Scholar
  2. 2.
    Barclay, J.A. 1982. Use of a ferrofluid as the heat-exchange fluid in a magnetic refrigerator. J. Appl. Phys. 53: 2887-2894 ADSCrossRefGoogle Scholar
  3. 3.
    Bates, L.F. 1951. The Thermal Effects Associated with Magnetization Processes. J. Phys. Radium 12: 459-470 CrossRefGoogle Scholar
  4. 4.
    Bates, L.F. and N.P.R. Sherry. 1955. The Direct Separation of the Reversible and Irreversible Components of the Magnetothermal Effect. Proc. Roy. Soc. B 68: 642-648 ADSCrossRefGoogle Scholar
  5. 5.
    Brown, G.V. 1976. Magnetic heat pumping near room temperature. J. Appl. Phys. 47: 3673-3680 ADSCrossRefGoogle Scholar
  6. 6.
    Caneva, Kenneth L. 2005. ‘Discovery’ as a site for the collective construction of scientific knowledge. Hist. Stud. Phys. Biol. 35: 175-291 CrossRefGoogle Scholar
  7. 7.
    Cazin, M. Achille. 1875. Mémoire sur les effets thermiques du magnétisme. Ann. Chem. Phys. 6: 493-554 Google Scholar
  8. 8.
    Debye, Peter. 1926. Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur. Ann. Phys. (Leipzig) 386: 1154-1160 ADSCrossRefGoogle Scholar
  9. 9.
    Delere, Heinrich. 1905. Über die Wärmeentwicklung bei cycklischer Magnetisierung von Eisenkernen. Inaugural-Dissertation. Westfälischen Vereinsdruckerei, Münster i. Westf., pp. 21-30 Google Scholar
  10. 10.
    Edison, Thomas. 1888. Pyromagnetic Motor. US Patent US380100 Google Scholar
  11. 11.
    Edison, Thomas. 1892. Pyromagnetic Generator. US Patent US476983 Google Scholar
  12. 12.
    Ewing, J.A. 1882. On Effects of Retentiveness in the Magnetisation of Iron and Steel. (Preliminary Notice.) Proc. Roy. Soc. 24: 39-45 CrossRefGoogle Scholar
  13. 13.
    Ewing, J.A. 1885. Experimental Researches in Magnetism. Phil. Trans. R. Soc. Lond. 176: 523-640 CrossRefGoogle Scholar
  14. 14.
    Faraday, Michael. 1856. Experimental Researches in Electricity. Thirtieth Series. Phil. Trans. R. Soc. Lond. 146: 159-180 CrossRefGoogle Scholar
  15. 15.
    Giauque, W.F. 1927. A Thermodynamic Treatment of Certain Magnetic Effects. A Proposed Method of Producing Temperatures Considerably Below 1◦ Absolute. J. Am. Chem. Soc. 49: 1864-1870 CrossRefGoogle Scholar
  16. 16.
    Giauque, W.F. and D.P. MacDougall. 1933. Attainment of Temperatures Below 1◦ Absolute by Demagnetization of Gd2(SO4)3·H2O. Phys. Rev. 43: 768 ADSCrossRefGoogle Scholar
  17. 17.
    Gross, Alan G. 1998. Do Disputes over Priority Tell Us Anything about Science? Sci. Context 11: 161-179 CrossRefGoogle Scholar
  18. 18.
    Gschneidner Jr., K.A. 1984. Past, Present and Future of Rare Earth Metallurgy. J. Less-Common Met. 100: 1-13 CrossRefGoogle Scholar
  19. 19.
    Gschneidner Jr., K.A., V.K. Pecharsky, A.O. Pecharsky and C.B. Zimm. 1999. Recent developments in magnetic refrigeration. Materials Science Forum 315-317: 69-76 CrossRefGoogle Scholar
  20. 20.
    Heydweiller, Adolf. 1906. Über die Thomsonsche Magnetisierungswärme; Entgegnung auf eine Bemerkung des Hrn. E. Warburg. Ann. Phys. (Leipzig) 325: 207-208 ADSCrossRefGoogle Scholar
  21. 21.
    Herwig, Hermann. 1878. Ueber Wärmeentwickelung durch Drehen von Moleculärmagneten. Ann. Phys. (Leipzig) 4: 177-187 ADSCrossRefGoogle Scholar
  22. 22.
    Joule, James. 1843. On the Calorific Effects of Magneto-Electricity, and on the Mechanical Value of Heat. Phil. Mag., Ser. 3, 23: 263-276 Google Scholar
  23. 23.
    Keith, Stephen T. and Pierre Quédec. Magnetism and Magnetic Materials. 1992. Out of the Crystal Maze: Chapters from the History of Solid-State Physics, Lillian Hoddeson et al. (eds.). Oxford University Press, New York, pp. 359-442 Google Scholar
  24. 24.
    Kuhn, Thomas S. 1962. Historical Structure of Scientific Discovery. Science 136: 760-764 ADSCrossRefGoogle Scholar
  25. 25.
    Kuz’min, M.D. and A.M. Tishin. 1992. Magnetocaloric Effect. Part 1: An introduction to various aspects of theory and practice. Cryogenics 32: 545-558 CrossRefADSGoogle Scholar
  26. 26.
    Langevin, M.P. 1905. Magnétisme et théorie des électrons. Ann. Chim. Phys. 5: 70-127 zbMATHGoogle Scholar
  27. 27.
    Merton, Robert K. 1957. Priorities in Scientific Discovery: A Chapter in the Sociology of Science. Am. Sociol. Rev. 22: 635-659 CrossRefGoogle Scholar
  28. 28.
    Myers, H.P. and W. Sucksmith. 1951. The spontaneous magnetization of cobalt. Proc. Roy. Soc. A 207: 427-446 ADSCrossRefGoogle Scholar
  29. 29.
    Oxford English Dictionary 3rd edn. 2000. Accessed online (, entry ‘magnetocaloric’
  30. 30.
    Potter, H.H. 1934. The Magneto-Caloric Effect and Other Magnetic Phenomena in Iron. Proc. Roy. Soc. A 146: 362-387 ADSCrossRefGoogle Scholar
  31. 31.
    Schwarzschild, Bertram M. 1979. Magnetic refrigerator–heat pump. Phys. Today 32: 18-20 Google Scholar
  32. 32.
    Simkin, M.V. and V.P. Roychowdbury. 2003. Read before you cite! Complex Syst. 14: 269-272 Google Scholar
  33. 33.
    Simkin, M.V. and V.P. Roychowdbury. 2012. Theory of citing. Handbook of Optimization in Complex Networks: Theory and Applications, M.T. Thai and P.M. Pardalos (eds.). Springer, Dordrecht, The Netherlands, pp. 463-505 Google Scholar
  34. 34.
    Smith, Anders et al. 2012. Materials challenges for high performance magnetocaloric refrigeration devices. Adv. Energy Mat. 2: 1288-1318 CrossRefGoogle Scholar
  35. 35.
    Stefan, J. 1871. Ueber die Gesetze der electrodynamischen Induction. Wien. Ber. 64: 193-224 Google Scholar
  36. 36.
    Stefan, J. 1889. Ueber thermomagnetische Motoren. Ann. Phys. 274: 427-440 CrossRefGoogle Scholar
  37. 37.
    Steyert, W.A. 1978. Stirling-cycle rotating magnetic refrigerators and heat engines for use near room temperature. J. Appl. Phys. 49: 1216-1226 ADSCrossRefGoogle Scholar
  38. 38.
    Tesla, Nikola. 1889. Thermo-Magnetic Motor. US Patent US396121 Google Scholar
  39. 39.
    Tesla, Nikola. 1890. Pyromagneto-Electric Generator. US Patent US428057 Google Scholar
  40. 40.
    Thomson, William. 1860. Cyclopedia of the Physical Sciences, 2nd edn., J.P. Nichol (ed.). Richard Green and Company, London and Glasgow, 838 Google Scholar
  41. 41.
    Thomson, William. 1878. On the Thermoelastic, Thermomagnetic, and Pyroelectric Properties of Matter. Phil. Mag., Ser. 5: 4-27 CrossRefGoogle Scholar
  42. 42.
    Tishin, A.M., K.A. Gschneidner Jr., and V.K. Pecharsky. 1999. Magnetocaloric effect and heat capacity in the phase-transition region. Phys. Rev. B 59: 503-511 ADSCrossRefGoogle Scholar
  43. 43.
    Urbain, Georges, Pierre Weiss and Félix Trombe. 1935. Un nouveau métal ferromagnétique, le gadolinium. Comptes Rendus 200: 2132-2134 Google Scholar
  44. 44.
    Warburg, Emil. 1881. Magnetische Untersuchungen. Ueber einige Wirkungen der Coërcitivkraft. Ann. Phys. (Leipzig) 249: 141-164 ADSCrossRefGoogle Scholar
  45. 45.
    Warburg, Emil and L. Hönig. 1882. Ueber die Wärme, welche durch periodisch wechselnde Kräfte im Eisen erzeugt wird. Ann. Phys. (Leipzig) 256: 814-835 ADSCrossRefGoogle Scholar
  46. 46.
    Warburg, Emil. 1906. Bemerkung zu der Arbeit des Hrn. Delere über die Wärmeentwickelung bei zyklischer Magnetisierung von Eisenkernen. Ann. Phys. (Leipzig) 324: 643-644 ADSCrossRefGoogle Scholar
  47. 47.
    Weiss, Pierre. 1907. L’hypothèse du champ moléculaire et la propriété ferromagnétique. J. Phys. (Paris), 4th Ser. 6: 661-690 zbMATHGoogle Scholar
  48. 48.
    Weiss, Pierre and Paul-N. Beck. 1908. Chaleur spécifique et champ moléculaire des substances ferromagnétiques. J. Phys. (Paris), 4th Ser. 7: 249-264 Google Scholar
  49. 49.
    Weiss, Pierre and Auguste Piccard. 1917. Le phénomène magnétocalorique. J. Phys. (Paris), 5th Ser. 7: 103-109 Google Scholar
  50. 50.
    Weiss, Pierre and Auguste Piccard. 1918. Sur un nouveau phénomène magnétocalorique. Comptes Rendus 166: 352-354 Google Scholar
  51. 51.
    Weiss, Pierre. 1921. Le phénomène magnéto-calorique. J. Phys. Radium 2: 161-182 CrossRefGoogle Scholar
  52. 52.
    Weiss, Pierre and R. Forrer. 1924. Phénomène magnétocalorique. Aimantation apparent et aimantation vraie. Comptes Rendus 178: 1448-1452 Google Scholar
  53. 53.
    Weiss, Pierre and R. Forrer. 1926. Aimantation et phénomène magnetocalorique du nickel. Ann. Phys. (Paris) 5: 153-213Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Energy Conversion and StorageTechnical University of DenmarkRoskildeDenmark

Personalised recommendations