The European Physical Journal H

, Volume 38, Issue 3, pp 281–344 | Cite as

Resolution enhancement techniques in microscopy

Open Access
Article

Abstract

We survey the history of resolution enhancement techniques in microscopy and their impact on current research in biomedicine. Often these techniques are labeled superresolution, or enhanced resolution microscopy, or light-optical nanoscopy. First, we introduce the development of diffraction theory in its relation to enhanced resolution; then we explore the foundations of resolution as expounded by the astronomers and the physicists and describe the conditions for which they apply. Then we elucidate Ernst Abbe’s theory of optical formation in the microscope, and its experimental verification and dissemination to the world wide microscope communities. Second, we describe and compare the early techniques that can enhance the resolution of the microscope. Third, we present the historical development of various techniques that substantially enhance the optical resolution of the light microscope. These enhanced resolution techniques in their modern form constitute an active area of research with seminal applications in biology and medicine. Our historical survey of the field of resolution enhancement uncovers many examples of reinvention, rediscovery, and independent invention and development of similar proposals, concepts, techniques, and instruments. Attribution of credit is therefore confounded by the fact that for understandable reasons authors stress the achievements from their own research groups and sometimes obfuscate their contributions and the prior art of others. In some cases, attribution of credit is also made more complex by the fact that long term developments are difficult to allocate to a specific individual because of the many mutual connections often existing between sometimes fiercely competing, sometimes strongly collaborating groups. Since applications in biology and medicine have been a major driving force in the development of resolution enhancing approaches, we focus on the contribution of enhanced resolution to these fields.

References

  1. 1.
    Abbe, E. 1873. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. M. Schultze’s Archive für Mikroskopische Anatomie IX: 413-468 CrossRefGoogle Scholar
  2. 2.
    Abbe, E. 1989a. Abhandlungen über die Theorie des Mikroskops I, Goerg Olms Verlag, Hildescheim, Germany Google Scholar
  3. 3.
    Abbe, E. 1989b. Gesammelte Abhandlungen, four volumes, Goerg Olms Verlag, Hildesheim, Germany Google Scholar
  4. 4.
    Ach, T., G. Best, S. Rossberger, R. Heintzmann, C. Cremer and S. Dithmar. 2012. Autofluorescence imaging of human RPE cell granules using structured illumination microscopy, Br. J. Ophthalmology, DOI 10.1136/bjophthalmol-2012-301547Google Scholar
  5. 5.
    Agard, D.A. and J. Sedat. 1983. Three-dimensional architecture of a polytene nucleus. Nature 302: 676-681 ADSCrossRefGoogle Scholar
  6. 6.
    Airy, G.B. 1835. On the Diffraction of an Object-glass with Circular Aperture. Trans. Cambridge Philos. Soc. 5: 283-291 ADSGoogle Scholar
  7. 7.
    Albrecht, B.A., V. Failla, R. Heintzmann and C. Cremer. 2001. Spatially modulated illumination microscopy: online visualization of intensity distribution and prediction of nanometer precision of axial distance measurements by computer simulations. Journal of Biomedical Optics 6: 292-292 ADSCrossRefGoogle Scholar
  8. 8.
    Albrecht, B.A., A. Failla, A. Schweitzer and C. Cremer. 2002. Spatially modulated illumination microscopy allows axial distance resolution in the nanometer range. Appl. Opt. 41: 80-87 ADSCrossRefGoogle Scholar
  9. 9.
    Andresen, M., A.C. Stiel, F. Jonas, D. Wenzel, A. Schönle, A. Egner, C. Eggeling, S.W. Hell and S. Jakobs. 2008. Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nature Biotechnology 26: 1035-1040 CrossRefGoogle Scholar
  10. 10.
    Ash, E.A. and G. Nichols, 1972. Super-resolution aperture scanning microscope, Nature 237: 510-512 ADSCrossRefGoogle Scholar
  11. 11.
    Baddeley, D., C. Carl and C. Cremer. 2006. 4Pi microscopy deconvolution with a variable point-spread function. Appl. Optics 45: 7056-7064 ADSCrossRefGoogle Scholar
  12. 12.
    Baddeley, D., C. Batram, Y. Weiland, C. Cremer and U.J. Birk. 2007. Nanostructure analysis using spatially modulated illumination microscopy. Nature Protocols 2: 2640-2646 CrossRefGoogle Scholar
  13. 13.
    Baddeley, D., I.D. Jayasinghe, C. Cremer, M.B. Cannell and C. Soeller. 2009a. Light-induced dark states of organic fluorochromes enable 30 nm resolution imaging in standard media. Biophys. J. 96: L22-L24 CrossRefGoogle Scholar
  14. 14.
    Baddeley, D., I.D. Jayasinghe, L. Lam, S. Rossberger, M.B. Cannell and C. Soeller. 2009b. Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes. Proc. Natl. Acad. Sci. USA 106: 22275-22280 ADSCrossRefGoogle Scholar
  15. 15.
    Baddeley, D., Y. Weiland, C. Batram, U. Birk and C. Cremer. 2010a. Model based precision structural measurements on barely resolved objects. J. of Microscopy 237: 70-78 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Baddeley, D., V.O. Chagin, L. Schermelleh, S. Martin, A. Pombo, P.M. Carlton, A. Gahl, P. Domaing, U. Birk, H. Leonhardt, C. Cremer and M.C. Cardoso. 2010b. Measurement of replication structures at the nanometer scale using super-resolution light microscopy. Nucleic Acids Res 38: e81-11. doi: 10.1093/nar/gkp901CrossRefGoogle Scholar
  17. 17.
    Baddeley, D., D. Crossman, S. Rossberger, J.E. Cheyne, J.M. Montgomery, I.D. Jayasinghe, C. Cremer, M.B. Cannell and C. Soeller. 2011. 4D Super-Resolution Microscopy with Conventional Fluorophores and Single Wavelength Excitation in Optically Thick Cells and Tissues. PLoS ONE 6: e20645. doi: 10.1371/journal.pone.0020645CrossRefADSGoogle Scholar
  18. 18.
    Baer, S.C. “Method and Apparatus for improving resolution in scanned optical system”, Filed: July 15, 1994, Date of Patent: February 2, 1999. U. S. Patent number: 5, 866, 911 Google Scholar
  19. 19.
    Bahlmann, K., S. Jakobs and S.W. Hell. 2001. 4Pi-confocal microscopy of live cells. Ultramicroscopy 87: 155-164 CrossRefGoogle Scholar
  20. 20.
    Bailey, B., D. Farkas, D.L. Taylor and F. Lanni. 1993. Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature 366: 44-48 ADSCrossRefGoogle Scholar
  21. 21.
    Bates, M., B. Huang, G. Dempsey and X. Zhuang. 2007. Multicolor super-resolution imaging with photoswitchable fluorescent probes. Science 317: 1749-1753 ADSCrossRefGoogle Scholar
  22. 22.
    Best, G., R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann and C. Cremer. 2011. Structured illumination microscopy of autofluorescent aggregations in human tissue. Micron 42: 330-335 CrossRefGoogle Scholar
  23. 23.
    Bethe, H.A. 1944. Theory of diffraction by small holes. The Physical Review 66: 163-182 MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    Betzig, E. 1995. Proposed method for molecular optical imaging. Optics Letters 20: 237-239 ADSCrossRefGoogle Scholar
  25. 25.
    Betzig, E., A. Lewis, M. Isaacson, A. Murray and A. Harootunian. 1986. Near Field Scanning Optical Microscopy (NSOM): Development and Biophysical Applications. Biophysical Journal 49: 269-279 ADSCrossRefGoogle Scholar
  26. 26.
    Betzig, E., G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz and H.F. Hess. 2006. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 313: 1642-1645 ADSCrossRefGoogle Scholar
  27. 27.
    Bewersdorf, J., B.T. Bennett and K.L. Knight. 2006. H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy. Proc. Natl. Acad. Sci. USA 103: 18137-18142 ADSCrossRefGoogle Scholar
  28. 28.
    Binnig, G. and H. Rohrer. 1982. Scanning tunneling microscopy. Helvetica Physica Acta 55: 726-735 Google Scholar
  29. 29.
    Binnig, G., C.F. Quate and Ch. Gerber. 1986. Atomic force microscope, Physical Review Letters 56: 930-933 ADSCrossRefGoogle Scholar
  30. 30.
    Birk, U.J., I. Upmann, D. Toomre, C. Wagner and C. Cremer. 2007. Size Estimation of Protein Clusters in the Nanometer Range by Using Spatially Modulated Illumination Microscopy, in: Modern Research and Educational Topics in Microscopy, edited by A. Mendez-Vilas, J. Diaz. FORMATEX Microscopy Series, Vol. 1, pp. 272-279 Google Scholar
  31. 31.
    Biteen, J.S., M.A. Thompson, N.K. Tselentis, G.R. Bowman, L. Shapiro and W.E. Moerner. 2008. Single-moldecule active-control microscopy (SMACM) with photo-reactivable EYFP for imaging biophysical processes in live cells. Nature Methods 5: 947-949 CrossRefGoogle Scholar
  32. 32.
    Bock, H., C. Geisler, C.A. Wurm, C. von Middendorff, S. Jakobs, A. Schönle, A. Egner, S.W. Hell and C. Eggeling. 2007. Two-color far-field fluorescence nanoscopy based on photoswitchable emitters. Appl. Phys. B 88: 161-165 ADSCrossRefGoogle Scholar
  33. 33.
    Bohn, M., P. Diesinger, R. Kaufmann, Y. Weiland, P. Müller, M. Gunkel, A. von Ketteler, P. Lemmer, M. Hausmann and C. Cremer. 2010. Localization Microscopy reveals expression dependent parameters of chromatin nanostructure. Biophys. J. 99: 1358-1367 ADSCrossRefGoogle Scholar
  34. 34.
    Born, M. and E. Wolf. 1980. Principles of optics, Electromagnetic theory of propagation, interference and diffraction of light. 7th edn. (Expanded). Cambridge, Cambridge University Press Google Scholar
  35. 35.
    Bornfleth, H., K. Sätzler, R. Eils and C. Cremer. 1998. High precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy. J. Microscopy 189: 118-136 CrossRefGoogle Scholar
  36. 36.
    Bradl, J., M. Hausmann, V. Ehemann, D. Komitowski and C. Cremer. 1992. A tilting device for three-dimensional microscopy: application to in situ imaging of interphase cell nuclei. J. Microscopy 168: 47-57 CrossRefGoogle Scholar
  37. 37.
    Bradl, J., M. Hausmann, B. Schneider, B. Rinke and C. Cremer. 1994. A versatile 2pi-tilting device for fluorescence microscopes. J. Microscopy 176: 211-221 CrossRefGoogle Scholar
  38. 38.
    Bradl, J., B. Rinke, B. Schneider, M. Hausmann and C. Cremer. 1996a. Improved resolution in ‘practical’ light microscopy by means of a glass fibre 2pi-tilting device, in: Optical and Imaging Techniques for Biomonitoring, edited by Hans-Jochen Foth, Renato Marchesini, Halina Podbielska, Michel Robert-Nicoud, Herbert Schneckenburger, Proc. SPIE 2628: 140-146 Google Scholar
  39. 39.
    Bradl, J., B. Rinke, A. Esa, P. Edelmann, H. Krieger, B. Schneider, M. Hausmann and C. Cremer. 1996b. Comparative study of three-dimensional localization accuracy in conventional, confocal laser scanning and axial tomographic fluorescence light microscopy. Proc. SPIE 2926: 201-206 ADSCrossRefGoogle Scholar
  40. 40.
    Brakenhoff, G.J., P. Blom and P. Barends. 1979. Confocal scanning light microscopy with high aperture immersion lenses. Journal of Microscopy 117: 219-232 CrossRefGoogle Scholar
  41. 41.
    Brakenhoff, G.J., H.T.M. van der Voort, E.A. van Spronsen, W.A.M. Linnemanns and N. Nanninga. 1985. Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal laserscanning microscopy. Nature 317: 748-749 ADSCrossRefGoogle Scholar
  42. 42.
    Born, M. and E. Wolf. 1975. Principles of Optics, Pergamon, Oxford Google Scholar
  43. 43.
    Bretschneider, S., C. Eggeling and S.W. Hell. 2007. Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys. Rev. Lett. 98: 218103-1-21803-4 ADSCrossRefGoogle Scholar
  44. 44.
    Brunner, A., G. Best, P. Lemmer, R. Amberger, T. Ach, S. Dithmar, R. Heintzmann and C. Cremer. 2011. Fluorescence Microscopy with Structured Excitation Illumination, in: Handbook of Biomedical Optics, edited by D.A. Boas, C. Pitris and N. Ramanujam. CRC Press, Boca Raton Google Scholar
  45. 45.
    Burns, D.H., J.B. Callis, G.D. Christian and E.R. Davidson. 1985. Strategies for attaining enhanced resolution using spectroscopic data as constraints. Appl. Optics 24: 154-161 ADSCrossRefGoogle Scholar
  46. 46.
    Chao, W., B.D. Harteneck, J.A. Liddle, E.H. Anderson and D.T. Attwood. 2005. Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 435: 1210-1213 ADSCrossRefGoogle Scholar
  47. 47.
    Chen, K.R. 2009. Focusing of light beyond the diffraction limit. arXiv.org/pdf/4623v1 Google Scholar
  48. 48.
    Courjon, D. 2003. Near-Field Microscopy and Near-Field Optics, Imperial College Press, London Google Scholar
  49. 49.
    Cremer, C. 2011. Lichtmikroskopie unterhalb des Abbe-Limits. Physik in Unserer Zeit 42: 21-29 (in German) ADSCrossRefGoogle Scholar
  50. 50.
    Cremer, C. 2011. Mikroskope und Mikroben. In: Viren und andere Mikroben: Heil oder Plage? Zum hundertsten Todestag von Robert Koch (Karlheinz Sonntag, Hg.). Studium Generale der Universität Heidelberg 2010. Universitätsverlag Winter, Heidelberg (in German) Google Scholar
  51. 51.
    Cremer, C. 2012. Optics far Beyond the Diffraction Limit From Focused Nanoscopy to Spectrally Assigned Localization Microscopy. Springer Handbook of Lasers and Optics, 2nd edition (F. Träger, Editor, pp. 1351–1389 Springer Verlag, Berlin Google Scholar
  52. 52.
    Cremer, C. and T. Cremer. 1972. Procedure for the Imaging and modification of object details with dimensions below the range of visible wavelengths. German Patent Application No. 2116521 (in German) Google Scholar
  53. 53.
    Cremer, C. et al., German Patent Application No. 196.54.824.1/DE, submitted Dec 23, 1996, European Patent EP 1997953660, 08.04.1999, Japanese Patent JP 1998528237, 23.06.1999, United States Patent US 09331644, 25.08.1999 Google Scholar
  54. 54.
    Cremer, C., A.V. Failla and B. Albrecht. 2002. Far-field light microscopical method, system and computer program product for analysing at least one object having a subwavelength size. US Patent7, 298, 461, filed Oct. 9, 2002, date of patent Nov 20, 2007 Google Scholar
  55. 55.
    Cremer, C., C. Zorn and T. Cremer. 1974. An ultraviolet laser microbeam for 257 nm. Microsc. Acta 75: 331-337 Google Scholar
  56. 56.
    Cremer, C. and T. Cremer. 1978. Considerations on a Laser-Scanning-Microscope with high resolution and depth of field. Microsc. Acta 81: 31-44 Google Scholar
  57. 57.
    Cremer, C., A. von Ketteler, P. Lemmer, R. Kaufmann, Y. Weiland, P. Mueller, M. Hausmann, D. Baddeley and A. Amberger. 2010. Far field fluorescence microscopy of cellular structures @ molecular resolution, in: Nanoscopy and Multidimensional Optical Fluorescence Microscopy, edited by A. Diaspro. Taylor and Francis. Abingdon, Oxford, UK, pp. 3/1-3/35 Google Scholar
  58. 58.
    Cremer, C., R. Kaufmann, M. Gunkel, S. Pres, Y. Weiland, P. Müller, T. Ruckelshausen, P. Lemmer, F. Geiger, S. Degenhard, C. Wege, N.A.W. Lemmermann, R. Holtappels, H. Strickfaden and M. Hausmann. 2011. Enhanced resolution Imaging of Biological Nanostructures by Spectral Precision Distance Microscopy (SPDM). Biotechnology Journal 6: 1037-1051 CrossRefGoogle Scholar
  59. 59.
    Cremer, C., P. Edelmann, H. Bornfleth, G. Kreth, H. Muench, H. Luz and M. Hausmann. 1999. Principles of Spectral Precision Distance confocal microscopy for the analysis of molecular nuclear structure. Handbook of Computer Vision and Applications, edited by B. Jähne, H. Haußecker, P. Geißler, Vol. 3, pp. 839-857 Google Scholar
  60. 60.
    Cremer, T. and C. Cremer. 2001. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nature Reviews Genetics 2: 292-301 CrossRefGoogle Scholar
  61. 61.
    Cseresnyes, Z., U. Schwarz and C.M. Green. 2009. Analysis of replication factories in human cells by super-resolution light microscopy. BMC Cell Biology 10: 88 doi: 10.1186/1471-2121-10-88CrossRefGoogle Scholar
  62. 62.
    Czapski, S. 1910. Theorie der optischen Instrumente nach Abbe. O. Lummer and F. Reiche, Die Lehre von der Bildentstehung im Mikroskop von Ernst Abbe, Friedrich View und Sohn, Braunschweig Google Scholar
  63. 63.
    Davidovits, P. and M.D. Egger. 1971. Scanning Laser Microscope for Biological Investigations. Appl. Optics 10: 1615-1619 ADSCrossRefGoogle Scholar
  64. 64.
    Dekker, A.J. and A. Van den Bos. 1997. Resolution: a survey. J. Opt. Soc. Am. A 14: 547-55 ADSCrossRefGoogle Scholar
  65. 65.
    Dertinger, T., R. Colyer, G. Iyer, S. Weiss and J. Enderlein. 2009. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl. Acad. Sci. 106: 22287-22292 ADSCrossRefGoogle Scholar
  66. 66.
    Dertinger, T., R. Colyer, R. Vogel, J. Enderlein and S. Weiss. 2010a. Achieving increased resolution and more pixels with superresolution optical fluctuation imaging (SOFI). Optics Express 18: 18875-18885 ADSCrossRefGoogle Scholar
  67. 67.
    Dertinger, T., M. Heilemann, R. Vogel, M. Sauer and S. Weiss. 2010b. Superresolution optical fluctuation imaging with organic dyes. Angew. Chemie. Int. Ed. 49: 9441-9443 CrossRefGoogle Scholar
  68. 68.
    Dickson, R.M., A.B. Cubitt, R.Y. Tsien and W.E. Moerner. 1997. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388: 355-358 ADSCrossRefGoogle Scholar
  69. 69.
    Dierolf, M., A. Menzel, P. Thibault, P. Schneider, C.M. Kewish, R. Wepf, O. Bunk and F. Pfeiffer. 2010. Ptychographic X-ray computed tomography at the Nanoscale. Nature 467: 436-439 ADSCrossRefGoogle Scholar
  70. 70.
    Dietzel, S., E. Weilandt, R. Eils, C. Münkel, C. Cremer and T. Cremer. 1995. Three-dimensional distribution of centromeric or paracentromeric heterochromatin of chromosomes 1, 7, 15, and 17 in human lymphocyte nuclei studied with light microscopic axial tomography. Bioimaging 3: 121-133 CrossRefGoogle Scholar
  71. 71.
    Donnert, G., J. Keller, R. Medda, M.A. Andrei, S.O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling and S.W. Hell. 2006. Macromolecular-scale resolution in biological fluorescence microscopy. Proc. Natl. Acad. Sci. USA 103: 11440-11445 ADSCrossRefGoogle Scholar
  72. 72.
    Donnert, G., J. Keller, C.A. Wurm, S.O. Rizzoli, V. Westphal, A. Schönle, R. Jahn, S. Jakobs, C. Eggeling and S.W. Hell. 2007. Two-Color Far-Field Fluorescence Nanoscopy. Biophys. J. 92: L67-L69 CrossRefGoogle Scholar
  73. 73.
    Edelmann, P., A. Esa, M. Hausmann and C. Cremer. 1999. Confocal laser scanning microscopy: In situ determination of the confocal point-spread function and the chromatic shifts in intact cell nuclei. Optik 110: 194-198 Google Scholar
  74. 74.
    Egner, A., M. Schrader and S.W. Hell. 1998. Refractive index mismatch induced intensity and phase variations in fluorescence confocal, multiphoton and 4Pi-microscopy. Opt. Commun. 153: 211-217 ADSCrossRefGoogle Scholar
  75. 75.
    Egner, A., C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A.C. Stiel, S. Jakobs, C. Eggeling, A. Schönle and S.W. Hell. 2007. Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophysical Journal 93: 3285-3290 ADSCrossRefGoogle Scholar
  76. 76.
    Egner, A., S. Jakobs and S.W. Hell. 2002. Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc. Natl. Acad. Sci. USA 99: 3370-3375 ADSCrossRefGoogle Scholar
  77. 77.
    Egner, A., S. Verrier, A. Goroshkov, H.-D. Söling and S.W. Hell. 2004. 4Pi-microscopy of the Golgi apparatus in live mammalian cells. J. Struct. Biol. 147: 70-76 CrossRefGoogle Scholar
  78. 78.
    Esa, A., A.E. Coleman, P. Edelmann, S. Silva, C. Cremer and S. Janz. 2001. Conformational differences in the 3D-nanostructure of the immunoglobulin heavy-chain locus, a hotspot of chromosomal translocations in B lymphocytes. Cancer Genetics and Cytogenetics 127: 168-173 CrossRefGoogle Scholar
  79. 79.
    Esa, A., P. Edelmann, L. Trakthenbrot, N. Amariglio, G. Rechavi, M. Hausmann and C. Cremer. 2000. 3D-spectral precision distance microscopy (SPDM) of chromatin nanostructures after triple-colour labelling a study of the BCR region on chromosome 22 and the Philadelphia chromosome. J. Microscopy 199: 96-105 CrossRefGoogle Scholar
  80. 80.
    Failla, A.V., and C. Cremer. 2001. Virtual Spatially Modulated Illumination Microscopy Prediction of Axial Distance Measurement. Proc. SPIE 4260: 120-125 ADSCrossRefGoogle Scholar
  81. 81.
    Failla, A.V., B. Albrecht, U. Spoeri, A. Schweitzer, A. Kroll, M. Bach and C. Cremer. 2003. Nanotopology analysis using spatially modulated illumination (SMI) microscopy. Complexus 1: 29-40 CrossRefGoogle Scholar
  82. 82.
    Failla, A.V., A. Cavallo and C. Cremer. 2002a. Subwavelength size determination by spatially modulated illumination virtual microscopy. Appl. Optics 41: 6651-6659 ADSCrossRefGoogle Scholar
  83. 83.
    Failla, A.V., U. Spöri, B. Albrecht, A. Kroll and C. Cremer. 2002b. Nanosizing of fluorescent objects by spatially modulated illumination microscopy. Appl. Optics 41: 7275-7283 ADSCrossRefGoogle Scholar
  84. 84.
    Fang, N., H. Lee, C. Sun and X. Zhang. 2005. Sub–Diffraction-Limited Optical Imaging with a Silver Superlens. Science 308: 534-537 ADSCrossRefGoogle Scholar
  85. 85.
    Fölling, J., M. Bossi, H. Bock, R. Medda, C.A. Wurm, B. Hein, S. Jakobs, C. Eggeling and S.W. Hell. 2008. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nature Methods 5: 943-945 CrossRefGoogle Scholar
  86. 86.
    Frohn, J., H. Knapp and A. Stemmer. 2000. True optical resolution beyond the Rayleigh limit achieved by standing wave illumination. Proc. Natl. Acad. Sci. USA 97: 7232-7236 ADSCrossRefGoogle Scholar
  87. 87.
    Gaskill, J.D. 1978. Linear Systems, Fourier Transforms, and Optics, John Wiley and Sons, New York, Vol. 38, pp. 165-169 Google Scholar
  88. 88.
    Geisler, C., A. Schönle, C. von Middendorff, H. Bock, C. Eggeling, A. Egner and S.W. Hell. 2007. Resolution of λ/10 in fluorescence microscopy using fast single molecule photo-switching. Applied Physics A: Materials Science and Processing 88: 223-226 ADSCrossRefGoogle Scholar
  89. 89.
    Glaschick, S., C. Röcker, K. Deuschle, J. Wiedenmann, F. Oswald, V. Mailänder and G.U. Nienhaus. 2007. Axial Resolution Enhancement by 4Pi Confocal Fluorescence Microscopy with Two-Photon Excitation. J Biol Phys. 33: 433-443 CrossRefGoogle Scholar
  90. 90.
    Gordon, M.P., T. Ha and P.R. Selvin. 2004. Single-molecule high-resolution imaging with photobleaching. Proc. Natl. Acad. Sci. USA 101: 6462-6465 ADSCrossRefGoogle Scholar
  91. 91.
    Gould, T.J. M.S. Gunewardene, M.V. Gudheti, V.V. Verkhusha, S. Yin, J.A. Gosse and S.T. Hess. 2008. Nanoscale Imaging of Molecular Positions and Anisotropies. Nature Methods 5: 1027-1030 CrossRefGoogle Scholar
  92. 92.
    Grab, A.L. 2011. In situ Nachweis von Proteinadsorptionsprozessen mittels kombinierter Schwingquarzmikrowägung und Plasmonenresonanz in Nanopartikelfilmen sowie Detektion einzelner Alexa Moleküle mit SPDM. Diploma Thesis, Faculty of Physics & Astronomy, University Heidelberg Google Scholar
  93. 93.
    Greger, K., M.J. Neetz, E.G. Reynaud and E.H. Stelzer. 2011. Three-dimensional Fluorescence Lifetime Imaging with a Single Plane Illumination Microscope provides an improved Signal to Noise Ratio. Optics Express 19: 20743-20750 ADSCrossRefGoogle Scholar
  94. 94.
    Gross, L., F. Mohn, N. Moll, P. Liljeroth and G. Meyer. 2009. The chemical structure of a molecule resolved by atomic force microscopy, Science 325: 1110-1114 ADSCrossRefGoogle Scholar
  95. 95.
    Grotjohann, T., I. Testa, M. Leutenegger, H. Bock, N.T. Urban, F. Lavoie-Cardinal, K.I. Willig, C. Eggeling, S. Jakobs and S.W. Hell. 2011. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478: 204-208 ADSCrossRefGoogle Scholar
  96. 96.
    Grüll, F., M. Kirchgessner, R. Kaufmann, M. Hausmann and U. Kebschull. 2011. Accelerating Image Analysis For Localization Microscopy With FPGAs. International Conference on Field Programmable Logic and Applications 2011, Chania, Greece, 2011 Google Scholar
  97. 97.
    Gugel, H., J. Bewersdorf, S. Jakobs, J. Engelhardt, R. Storz and S.W. Hell. 2004. Cooperative 4Pi Excitation and Detection Yields Sevenfold Sharper Optical Sections in Live-Cell Microscopy. Biophys J. 87: 4146-4152 CrossRefGoogle Scholar
  98. 98.
    Gunkel, M., F. Erdel, K. Rippe, P. Lemmer, R. Kaufmann, C. Hörmann, C., R. Amberger and C. Cremer. 2009. Dual Color Localization Microscopy of Cellular Nanostructures. Biotechnology J. 4: 927-938 CrossRefGoogle Scholar
  99. 99.
    Gustafsson, M.G.L. 1999. Extended resolution fluorescence microscopy. Curr. Opinion Struct. Biol. 9: 627-634 MathSciNetCrossRefGoogle Scholar
  100. 100.
    Gustafsson, M.G.L. 2000. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198: 82-87 CrossRefGoogle Scholar
  101. 101.
    Gustafsson, M. 2005. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102: 13081-13086 ADSCrossRefGoogle Scholar
  102. 102.
    Gustafsson, M., L. Shao, P.M. Carlton, C.J.R. Wang, I.N. Golubovskaya, W.Z. Cande, D.A. Agard and J.W. Sedat. 2008. Three-Dimensional Resolution Doubling in Wide-Field Fluorescence Microscopy by Structured Illumination. Biophysical Journal 94: 4957-4970 ADSCrossRefGoogle Scholar
  103. 103.
    Ha, T., Th. Enderle, D.S. Chemla and S. Weiss. 1996. Dual-Molecule Spectroscopy: Molecular Rulers for the Study of Biological Macromolecules IEEE Journal of selected topics in Quantum Electronics 2: 1115-1128 CrossRefGoogle Scholar
  104. 104.
    Hänninen, P.E., S.W. Hell, J. Salo, E. Soini and C. Cremer. 1995. Two-photon excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research. Appl. Phys. Lett. 66: 1698-1700 ADSCrossRefGoogle Scholar
  105. 105.
    Hausmann, M., B. Schneider, J. Bradl and C. Cremer. 1997. High-precision distance microscopy of 3D-nanostructures by a spatially modulated excitation fluorescence microscope. Proc. SPIE 3197: 217-222 ADSCrossRefGoogle Scholar
  106. 106.
    Heilemann, M. 2008. Subdiffraction-resolution fluorescence imaging withconventional fluorescent probes. Angew. Chem. 47: 6172-6176 Google Scholar
  107. 107.
    Heintzmann, R. 2003. Saturated patterned excitation microscopy with two-dimensional excitation patterns. Micron 34: 283-291 CrossRefGoogle Scholar
  108. 108.
    Heilemann, M., D.P. Herten, R. Heintzmann, C. Cremer, C. Müller, P. Tinnefeld, K.D. Weston, J. Wolfrum and M. Sauer. 2002. High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy. Analytical Chemistry 74: 3511-3517 CrossRefGoogle Scholar
  109. 109.
    Heintzmann, R. and C. Cremer. 1999. Lateral modulated excitation microscopy: Improvement of resolution by using a diffraction grating. Proc. SPIE 356: 185-196 CrossRefGoogle Scholar
  110. 110.
    Heintzmann, R. and C. Cremer. 2002. Axial tomographic confocal fluorescence microscopy. J. of Microscopy 206: 7-23 MathSciNetCrossRefGoogle Scholar
  111. 111.
    Heintzmann, R., T. Jovin and C. Cremer. 2002. Saturated patterned excitation microscopy – a concept for optical resolution improvement. J. Opt. Soc. Am. A 19: 1599-1609 ADSCrossRefGoogle Scholar
  112. 112.
    Hell, S. 1990a. “Abbildung transparenter Mikrostrukturen im Konfokalen Mikroskop” (Imaging of transparant microstructures in the confocal microscope), Ph.D. Dissertation Physics, University Heidelberg, Germany Google Scholar
  113. 113.
    Hell, S.W. 1990b. Double confocal microscope. European Patent 91121368 (July 2, 1992); German patent application P40 40 441.2 (filed December 18, 1990; published 1992) Google Scholar
  114. 114.
    Hell, S.W. 2003. Toward fluorescence nanoscopy. Nature Biotechnology 2: 1347-1355 CrossRefGoogle Scholar
  115. 115.
    Hell, S.W. 2007. Far-Field Optical Nanoscopy, Science 316: 1153-1158 ADSCrossRefGoogle Scholar
  116. 116.
    Hell, S.W. 2009. Microscopy and its focal switch. Nature Methods 6: 24-32 CrossRefGoogle Scholar
  117. 117.
    Hell, S.W. and M. Kroug. 1995. Ground-state-depletion fluorescence microscopy: A concept for breaking the diffraction resolution limit. Appl. Phys. B 5: 495-497 ADSCrossRefGoogle Scholar
  118. 118.
    Hell, S.W. and M. Nagorni. 1998. 4Pi confocal microscopy with alternate interference. Optics Letters 23: 1567-1569 ADSCrossRefGoogle Scholar
  119. 119.
    Hell, S. and E.H.K. Stelzer. 1992a. Properties of a 4Pi confocal fluorescence microscope. J. Opt. Soc. Am. A 9: 2159-2166 ADSCrossRefGoogle Scholar
  120. 120.
    Hell, S. and E.H.K. Stelzer. 1992b. Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation. Optics Communications 93: 277-282 ADSCrossRefGoogle Scholar
  121. 121.
    Hell, S.W. and J. Wichmann. 1994. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters 19: 780-782 ADSCrossRefGoogle Scholar
  122. 122.
    Hell, S.W., S. Lindek, C. Cremer and E.H.K. Stelzer. 1994a. Measurement of the 4Pi-confocal point spread function proves 75 nm axial resolution. Applied Physics Letters 64: 1335-1337 ADSCrossRefGoogle Scholar
  123. 123.
    Hell, S.W., E.H.K. Stelzer, S. Lindek and C. Cremer. 1994b. Confocal microscopy with an increased detection aperture: true-B 4Pi confocal microscopy. Optics Lett. 19: 222-224 ADSCrossRefGoogle Scholar
  124. 124.
    Helmholtz, H. 1874. Die theoretische Grenze für die Leistungsfähigkeit der Mikroskope. Annalen der Physik, (Leipzig) Jubelband, 557-585 Google Scholar
  125. 125.
    Herzenberg, L.A., D. Parks, B. Sahaf, O. Perez, M. Roederer and L.A. Herzenberg. 2002. Activated Cell Sorter and Flow Cytometry: A View from Stanford. Clinical Chemistry 48: 1819-1827 Google Scholar
  126. 126.
    Hess, S., T. Girirajan and M. Mason. 2006. Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy. Biophysical Journal 91: 4258-4272 ADSCrossRefGoogle Scholar
  127. 127.
    Hess, S.T., T.J. Gould, M.V. Gudheti, S.A. Maas, K.D. Mills and J. Zimmerberg. 2007. Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc. Natl. Acad. Sci. 104: 17370-17375 ADSCrossRefGoogle Scholar
  128. 128.
    Hildenbrand, G., A., Rapp, U. Spori, C. Wagner, C. Cremer and M. Hausmann. 2005. Nano-Sizing of Specific Gene Domains in Intact Human Cell Nuclei by Spatially Modulated Illumination Light Microscopy. Biophysical Journal 88: 4312-4318 ADSCrossRefGoogle Scholar
  129. 129.
    Hofmann, M., C. Eggeling, S. Jakobs and S.W. Hell. 2005. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. USA 102: 17565-17569 ADSCrossRefGoogle Scholar
  130. 130.
    Huang, B., W. Wang, M. Bates, X. Zhuang. 2008. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319: 810-813 ADSCrossRefGoogle Scholar
  131. 131.
    Huber, O., A. Brunner, P. Maier, R. Kaufmann, P.-O. Couraud, C. Cremer and G. Fricker. 2012. Localization microscopy (SPDM) reveals clustered formations of P-Glycoprotein in a human blood-brain barrier model. PLoS ONE 7 e44776: 1-10 CrossRefGoogle Scholar
  132. 132.
    Hüve, J., R. Wesselmann, M. Kahms and R. Peters. 2008. 4Pi microscopy of the nuclear pore complex. Biophysical J. 95: 877-885 CrossRefGoogle Scholar
  133. 133.
    Jones, S., S.-H. Shim, J. He, X. Zhuang. 2011. Fast three-dimensional super-resolution imaging of live cells. Nature Methods 8: 499-505 CrossRefGoogle Scholar
  134. 134.
    Jutamulia, S. 2002. Selected Papers on Near-Field Optics, SPIE Milestone Series, SPIE Optical Engineering Press, Bellingham, Vol. MS 172 Google Scholar
  135. 135.
    Kaufmann, R., P. Lemmer, M. Gunkel, Y. Weiland, P. Müller, M. Hausmann, D. Baddeley, R. Amberger and C. Cremer. 2009. SPDM–Single Molecule Superresolution of Cellular Nanostructures. Proc. SPIE 7185: 71850J-1-71850-19 Google Scholar
  136. 136.
    Kaufmann, R., P. Müller, M. Hausmann and C. Cremer. 2011a. Analysis of Her2/neu membrane protein clusters in different types of breast cancer cells using localization microscopy. J. of Microscopy 242: 46-54 CrossRefGoogle Scholar
  137. 137.
    Kaufmann, R., P. Müller, M. Hausmann and C. Cremer. 2011b. Nanoimaging cellular structures in label-free human cells by spectrally assigned localization microscopy. Micron 42: 348-352 CrossRefGoogle Scholar
  138. 138.
    Kaufmann, R., J. Piontek, F. Grüll, M. Kirchgessner, J. Rossa, H. Wolburg, I.E. Blasig and C. Cremer. 2012a. Visualization and quantitative analysis of reconstituted tight junctions using localization microscopy. PLoS ONE 7 e31128: 1-9 Google Scholar
  139. 139.
    Kaufmann, R., C. Cremer and J.G. Gall. 2012b. Superresolution imaging of transcription units on newt lampbrush chromosomes, Chromosome Research, doi: 10.1007/s10577-012-9306-z-Google Scholar
  140. 140.
    Keller, P.J., F. Pampaloni, and E.H. Stelzer. 2007. Three-dimensional preparation and imaging reveal intrinsic microtubule properties. Nature Methods 4: 843-846 CrossRefGoogle Scholar
  141. 141.
    Keller, P.J., A.D. Schmidt, J. Wittbrodt, E.H. Stelzer. 2008. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322: 1065-1069 ADSCrossRefGoogle Scholar
  142. 142.
    Klein, T., A. Löschberger, S. Proppert, S. Wolter, S. van de Linde, M. Sauer. 2011. Live-cell dSTORM with SNAP-tag fusion proteins. Nature Methods 8: 7-9 CrossRefGoogle Scholar
  143. 143.
    Köhler, H. 1981. On Abbe’s theory of image formation in the microscope. Optica Acta 28: 1691-1701 MathSciNetCrossRefGoogle Scholar
  144. 144.
    Lacoste, T.D., X. Michalet, F. Pinaud, D.S. Chemla, A.P. Alivisatos and S. Weiss. 2000. Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc. Natl. Acad. Sci. USA 97: 9461-9466 ADSCrossRefGoogle Scholar
  145. 145.
    Lang, M., T. Jegou, I. Chung, K. Richter, S. Münch, A. Udvarhelyi, C. Cremer, P. Hemmerich, J. Engelhardt, S.W. Hell and K. Rippe. 2010. Three-dimensional organization of promyelocytic leukemia nuclear bodies. J. of Cell Science 123: 392-412 CrossRefGoogle Scholar
  146. 146.
    Lanni, F., B. Bailey, D.L. Farkas and D.L. Taylor. 1993. Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopes. Bioimaging 1: 187-196 CrossRefGoogle Scholar
  147. 147.
    Lemmer, P., M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann and C. Cremer. 2008. SPDM: Light microscopy with single-molecule resolution at the nanoscale. Applied Physics B 93: 1-12 CrossRefGoogle Scholar
  148. 148.
    Lemmer, P., M. Gunkel, D. Baddeley, R. Kaufmann, Y. Weiland, P. Müller, A. Urich, R. Amberger, H. Eipel, M. Hausmann and C. Cremer. 2009. Using Conventional Fluorescent Markers for Far-field Fluorescence Localization Nanoscopy allows Resolution in the 10 nm Regime. J. of Microscopy 235: 163-171 CrossRefGoogle Scholar
  149. 149.
    Lewis, A., M. Isaacson, A. Harootunian and A. Muray. 1984. Development of a 500 Å spatial resolution light microscope. I. Light is efficiently transmitted through λ/16 diameter apertures. Ultramicroscopy 13: 227-231 CrossRefGoogle Scholar
  150. 150.
    Lidke, K.A., B. Rieger, T.M. Jovin and R. Heintzmann. 2005. Superresolution by localization of quantum dots using blinking statistics. Opt. Express 13: 7052-7062 ADSCrossRefGoogle Scholar
  151. 151.
    Lindek, S., C. Cremer and E.H.K. Stelzer. 1994. Theta microscopy allows phase regulation in 4Pi(A)-confocal two-photon fluorescence microscopy. Optik 98: 15-20 Google Scholar
  152. 152.
    Lindek, S., C. Cremer and E.H.K. Stelzer. 1996. Confocal theta fluorescence microscopy with annular apertures. Appl. Optics 35: 126-130 ADSCrossRefGoogle Scholar
  153. 153.
    Lipson, A., S.G. Lipson, H. Lipson. 2010. Optical Physics, 4th edn., Cambridge University Press, Cambridge Google Scholar
  154. 154.
    Liu, Y. and X. Zhang. 2011. Metamaterials: a new frontier of science and technology. Chem. Soc. Rev. 40: 2494-2507 CrossRefGoogle Scholar
  155. 155.
    Löschberger, A., S. van de Linde, M.-C. Dabauvalle, B. Rieger, M. Heilemann, G. Krohne and M. Sauer. 2012. Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J. of Cell Science 125: 570-575 CrossRefGoogle Scholar
  156. 156.
    Lukosz, W. 1966. Optical systems with resolving powers exceeding the classical limit, Part 1. J. Opt. Soc. Am. 56: 1463-1472 ADSCrossRefGoogle Scholar
  157. 157.
    Lukosz, W. 1967. Optical systems with resolving powers exceeding the classical limit. II. J. Opt. Soc. Am. 57: 932-941 ADSCrossRefGoogle Scholar
  158. 158.
    Lummer, O. and F. Reiche. 1910. Die Lehre von der Bildentstehung im Mikroskop von Ernst Abbe, Friedrich View und Sohn, Braunschweig Google Scholar
  159. 159.
    Mahajan, V.N. 2001. Optical Imaging and Aberrations, Part II, Wave Diffraction. SPIE Press, Bellingham Google Scholar
  160. 160.
    Markaki, Y., M. Gunkel, L. Schermelleh, S. Beichmanis, J. Neumann, M. Heidemann, H. Leonhardt, D. Eick, C. Cremer and T. Cremer. 2011. Functional nuclear organization of transcription and DNA replication: a topographical marriage between chromatin domains and the interchromatin compartment. Cold Spring Harbor Symposia on Quantitative Biology 75: 1-18, doi: 10.1101/sqb.2010.75.042CrossRefGoogle Scholar
  161. 161.
    Martin, Y. 1995. Selected Papers on Scanning Probe Microscopes, SPIE Milestone Series, SPIE Optical Engineering Press, Bellingham, Vol. MS 107 Google Scholar
  162. 162.
    Martin, S., A.V. Failla, U. Spoeri, C. Cremer and A. Pombo. 2004. Measuring the Size of Biological Nanostructures with Spatially Modulated Illumination Microscopy. Molecular Biology of the Cell 15: 2449-2455 CrossRefGoogle Scholar
  163. 163.
    Masters, B.R. 1996. Selected Papers on Confocal Microscopy, SPIE Milestone Series, volume MS 131, SPIE Optical Engineering Press, Bellingham Google Scholar
  164. 164.
    Masters, B.R. 2001. Selected Papers on Optical Low-Coherence Reflectometry & Tomography, SPIE Milestone Series, SPIE Optical Engineering Press, Bellingham, Vol. MS 165 Google Scholar
  165. 165.
    Masters, B.R. 2003. Selected Papers on Multiphoton Excitation Microscopy, SPIE Milestone Series, volume MS 175, SPIE Optical Engineering Press, Bellingham Google Scholar
  166. 166.
    Masters, B.R. 2007. Ernst Abbe and the Foundation of Scientific Microscopes. Optics and Photonics, News Optical Society of America, Washington, DC 18: 18-23 CrossRefGoogle Scholar
  167. 167.
    Masters, B.R. 2008. History of the Optical Microscope in Cell Biology and Medicine, in: Encyclopedia of Life Sciences (ELS), John Wiley and Sons, Ltd: Chichester, UK, doi: 10.1002/9780470015902.a0003082Google Scholar
  168. 168.
    Masters, B.R. 2009a. The Development of Fluorescence Microscopy, in: Encyclopedia of Life Sciences (ELS), John Wiley and Sons, Ltd: Chichester, UK, DOI: 10.1002/9780470015902.a0022093Google Scholar
  169. 169.
    Masters, B.R. 2009b. History of the Electron Microscope in Cell Biology, in: Encyclopedia of Life Sciences (ELS), Chichester, UK. John Wiley and Sons, Ltd: September 2009, DOI: 10.1002/9780470015902.a0021539Google Scholar
  170. 170.
    Masters, B.R. 2010. Three-Dimensional Confocal Microscopy of the Living Human Cornea, in: Handbook of Optics, Vision and Vision Optics, 3rd edn., edited by M. Bass, J. M. Enoch, V. Lakshminarayanan, 17.1-17.11, McGraw-Hill, New York, Vol. III Google Scholar
  171. 171.
    Masters, B.R. and P.T.C. So. 2008. Handbook of Biomedical Nonlinear Optical Microscopy, Oxford University Press, New York Google Scholar
  172. 172.
    Mathée, H., D. Baddeley, C. Wotzlaw, J. Fandrey, C. Cremer and U. Birk. 2006. Nanostructure of specific chromatin regions and nuclear complexes. Histochem. Cell Biology 125: 75-82 CrossRefGoogle Scholar
  173. 173.
    Mathee, H., D. Baddeley, C. Wotzlaw, C. Cremer and U. Birk. 2007. Spatially Modulated Illumination Microscopy using one objective lens. Optical Engineering 46: 083603/1-083603/8 ADSCrossRefGoogle Scholar
  174. 174.
    Matsuda, A., L. Shao, J. Boulanger, C. Kervrann, P.M. Carlton, P. Kner, D. Agard and J.W. Sedat. 2010. Condensed Mitotic Chromosome Structure at Nanometer Resolution Using PALM and EGFP- Histones. PLoS ONE 5 e12768: 1-12 Google Scholar
  175. 175.
    McCutchen, C.W. 1967. Superresolution in microscopy and the Abbe resolution limit. J. Opt. Soc. Am. 57: 1190-1192 ADSCrossRefGoogle Scholar
  176. 176.
    McEvoy, A.L., D. Greenfield, M. Bates and J. Liphardt. 2010. Single-molecule localization microscopy for biological imaging. BMC Biology 8: 106, http://www.biomedcentral.com/1741-7007/8/106 URLCrossRefGoogle Scholar
  177. 177.
    McMullan, D. 1990. The prehistory of scanned image microscopy. Part 1: Scanned optical microscopes. Proceedings of the Royal Microscopical Society 25: 127-131 Google Scholar
  178. 178.
    Müller, E.W. 1937. Beobachtungen über die Feldemission und die Kathodenzerstäubung an thoriertem Wolfram. Z. für Physik 106: 132-140 ADSCrossRefGoogle Scholar
  179. 179.
    Müller, E.W. and T.T. Tsong. 1969. Field Ion Microscopy, Principles and Applications. American Elsevier Publishing Company, New York Google Scholar
  180. 180.
    Nagerl, U.V., K.I. Willig, B. Hein et al. 2008. Live-cell imaging of dendritic spines by STED microscopy. Proc. Natl. Acad. Sci. USA 105: 18982-18987 ADSCrossRefGoogle Scholar
  181. 181.
    Nagorni, M. and S.W. Hell. 1998. 4Pi-Confocal Microscopy Provides Three-Dimensional Images of the Microtubule Network with 100- to 150-nm Resolution. J. Struct. Biol. 123: 236-247 CrossRefGoogle Scholar
  182. 182.
    Newberry, S.P. and N.Y. Schenectady. 1959. X-ray Microscope. US Patent 2, 877, 353, granted March 10 Google Scholar
  183. 183.
    Paesler, M.A. and P.J. Moyer. 1996. Near-field optics. Theory, Instrumentation, and Applications. John Wiley and Sons, Inc., New York Google Scholar
  184. 184.
    Pendry, J.B. 2000. Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett. 85: 3966-3969 ADSCrossRefGoogle Scholar
  185. 185.
    Pereira, C.F., J. Rossy, D. M. Owen, J. Mak and K. Gaus. 2012. HIV taken by STORM: Super-resolution fluorescence microscopy of a viral infection. Virology Journal 9: 84, doi: 10.1186/1743-422X-9-84CrossRefGoogle Scholar
  186. 186.
    Perinetti, G., T. Müller, A. Spaar, R. Polishchuk, A. Luini and A. Egner. 2009. Correlation of 4Pi and electron microscopy to study transport through single Golgi stacks in living cells with super resolution. Traffic 10: 379-391 CrossRefGoogle Scholar
  187. 187.
    Pertsinidis, A., Y. Zhang and S. Chu. 2010. Subnanometre single-molecule localization, registration and distance measurements. Nature 466: 647-651 ADSCrossRefGoogle Scholar
  188. 188.
    Pohl, D.W., W. Denk and M. Lanz. 1984. Optical stethoscopy: Image recording with resolution λ/20. Appl. Phys. Lett. 44: 651-654 ADSCrossRefGoogle Scholar
  189. 189.
    Porter, A.B. 1906. On the Diffraction Theory of Microscopic Vision. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 11: 154-166 MATHCrossRefGoogle Scholar
  190. 190.
    Rauch, J., M. Hausmann, I. Solovei, B. Horsthemke, T. Cremer and C. Cremer. 2000. Measurement of local chromatin compaction by Spectral Precision Distance microscopy. in: Laser Microscopy, edited by K. Koenig, H.J. Tanke, H. Schneckenburger, Proc. SPIE 4164: 1-9 Google Scholar
  191. 191.
    Rauch, J., T.A. Knoch, I. Solovei, K. Teller, S. Stein, K. Buiting, B. Horsthemke, J. Langowski, T. Cremer, M. Hausmann and C. Cremer. 2008. Light-Optical precision measurements of the active and inactive Prader-Willi Syndrome imprinted regions in human cell nuclei. Differentiation 76: 66-83 Google Scholar
  192. 192.
    Rayleigh, L. 1880a. Investigations in Optics, with special reference to the spectroscope. 1. Resolving or separating, power of optical instruments. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, VIII XXXI: 261-274 Google Scholar
  193. 193.
    Rayleigh, L. 1880b. On the resolving-power of telescopes. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science X: 116-119 CrossRefGoogle Scholar
  194. 194.
    Rayleigh, L. 1896. On the Theory of Optical Images, with Special Reference to the microscope. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 42, Part XV: 167-195 MATHCrossRefGoogle Scholar
  195. 195.
    Rayleigh, L. 1899. Investigations in optics, with special reference to the spectroscope. In: Scientific papers by John William Strutt, Baron Rayleigh, Cambridge, Cambridge University Press, Cambridge, 1899, Vol. 1, pp. 415-459 Google Scholar
  196. 196.
    Reymann, J., D. Baddeley, M. Gunkel, P. Lemmer, W. Stadter, T. Jegou, K. Rippe, C. Cremer and U. Birk. 2008. High-precision structural analysis of subnuclear complexes in fixed and live cells via spatially modulated illumination (SMI) microscopy. Chromosome Research 16: 367-382 CrossRefGoogle Scholar
  197. 197.
    Ries, J., C. Kaplan, E. Platonova, H. Eghlidi and H. Ewers. 2012. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nature Methods 9: 582-584 CrossRefGoogle Scholar
  198. 198.
    Rittweger, E., K.Y. Han, S.E. Irvine, C. Eggeling and S.W. Hell. 2009. STED microscopy reveals crystal colour centres with nanometric resolution. Nature Photonics 3: 144-147 ADSCrossRefGoogle Scholar
  199. 199.
    Rouquette, J., C. Cremer, T. Cremer and S. Fakan. 2010. Functional nuclear architecture studied by microscopy: state of research and perspectives. Int. Rev. Cell. Mol. Bio. 282: 1-90 CrossRefGoogle Scholar
  200. 200.
    Ruska, E. 1979. Die frühe Entwicklung der Elektronenlisen und der Elektronmikroskopie, Acta Historica Leopoldina, 12, Halle/Saale, Deutsche Akademie der Naturforscher Leopoldina Google Scholar
  201. 201.
    Ruska, E. 1986. The development of the electron microscope and of electron microscopy. Nobel Lecture December 8, 1986 Google Scholar
  202. 202.
    Rust, M., M. Bates and X. Zhuang. 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods 3: 793-795 CrossRefGoogle Scholar
  203. 203.
    Schellenberg, F.M. 2004. Selected Papers on Resolution Enhancement Techniques in Optical Lithography, SPIE Milestone Series, SPIE Press, Bellingham, Vol. MS 178 Google Scholar
  204. 204.
    Schermelleh, L., P.M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M.C. Cardoso, D.A. Agard, M.G.L. Gustafsson, H. Leonhardt and J.W. Sedat. 2008. Subdiffraction multicolor imaging of the nuclear periphery with 3d structured illumination microscopy. Science 320: 1332-1336 ADSCrossRefGoogle Scholar
  205. 205.
    Schmahl, G. and D. Rudolph. 1989. X-ray microscope. US Patent 4, 870, 674 Google Scholar
  206. 206.
    Schmidt, M., M. Nagorni and S.W. Hell. 2000. Subresolution axial distance measurements in far-field fluorescence microscopy with precision of 1 nanometer. Review of Scientific Instruments 71: 2742-2745 ADSCrossRefGoogle Scholar
  207. 207.
    Schmidt, R., C.A. Wurm, S. Jakobs, J. Engelhardt, A. Egner and S.W. Hell. 2008. Spherical nanosized focal spot unravels the interior of cells. Nature Methods 5: 539-544 CrossRefGoogle Scholar
  208. 208.
    Schneider, G., P.G. Guttmann, S. Heim, S. Rehbein, F. Mueller, K. Nagashima, J.B. Heymann, W.G. Müller and J.G. McNally. 2010. Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nature Methods 7: 985-987 CrossRefGoogle Scholar
  209. 209.
    Schneider, B., B. Albrecht, P. Jaeckle, D. Neofotistos, S. Söding, Th. Jäger and C. Cremer. 2000. Nanolocalization measurements in spatially modulated illumination microscopy using two coherent illumination beams. Proc. SPIE 3921: 321-330 ADSCrossRefGoogle Scholar
  210. 210.
    Schrader, M., F. Meinecke, K. Bahlmann, M. Kroug, C. Cremer, E. Soini and S.W. Hell. 1995. Monitoring the excited state of a dye in a microscope by stimulated emission. Bioimaging 3: 147-153 CrossRefGoogle Scholar
  211. 211.
    Schwentker, A., H. Bock, M. Hofmann, S. Jakobs, J. Bewersdorf, C. Eggeling and S.W. Hell. 2007. Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching. Microscopy Research and Technique 70: 269-280 CrossRefGoogle Scholar
  212. 212.
    Schwering, M., A.A. Kiel, A. Kurz, K. Lymperopoulos, A. Sprödefeld, R. Krämer and D.P. Herten. 2011. Far-Field Nanoscopy with Reversible Chemical Reactions. Angew. Chem. Int. Edit. 50: 2940-2945 CrossRefGoogle Scholar
  213. 213.
    Sengupta, P., T. Jovanovic-Talisman, D. Skoko, M. Renz, S.L. Veatch and J. Lippincott-Schwartz. 2011. Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nature Methods 8: 969-975 CrossRefGoogle Scholar
  214. 214.
    Sheppard, C.J.R. 2007. Fundamentals of superresolution. Micron 38: 165-169 CrossRefGoogle Scholar
  215. 215.
    Sheppard, C.J.R. and T. Wilson. 1978. Image formation in scanning microscopes with partially coherent source and detector. Optica Acta 25: 315-325 ADSCrossRefGoogle Scholar
  216. 216.
    Shroff, H., C.G. Galbraith, J.A. Galbraith and E. Betzig. 2008. Live-cell photoactivated Localization Microscopy of nanoscale adhesion dynamics. Nature Methods 5: 417-423 CrossRefGoogle Scholar
  217. 217.
    Shtengel, G., J.A. Galbraith, C.G. Galbraith, J. Lippincott-Schwartz, J.M. Gillette, S. Manleyd, R. Sougrat, C.M. Watermane, P. Kanchanawong, M.W. Davidson, R.D. Fetter and H.F. Hess. 2009. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl. Acad. Sci. USA 106: 3125-3130 ADSCrossRefGoogle Scholar
  218. 218.
    Sinnecker, D., P. Voigt, N. Hellwig and M. Schaefer. 2005. Reversible photobleaching of enhanced green fluorescent proteins. Biochemistry 44: 7085-7094 CrossRefGoogle Scholar
  219. 219.
    Smolyaninov, I.I., Y.-J. Hung and C.C. Davis. 2007. Magnifying Superlens in the Visible Frequency Range. Science 315: 1699-1701 ADSCrossRefGoogle Scholar
  220. 220.
    Sparrow, C.M. 1916. On spectroscopic resolving power. The Astrophysical Journal XLIV: 76-86 ADSCrossRefGoogle Scholar
  221. 221.
    Staier, F., H. Eipel, P. Matula, A.V. Evsikov, M. Kozubek, C. Cremer and M. Hausmann. 2011. Micro Axial Tomography: a miniaturized, versatile stage device to overcomeresolution anisotropy in fluorescence light microscopy. Rev. Sci. Instr. 82: 09370. doi: 10.1063/1.3632115CrossRefGoogle Scholar
  222. 222.
    Steinhauer, C., C.C. Forthmann, J. Vogelsang and P. Tinnefeld. 2008. Super resolution Microscopy on the Basis of Engineered Dark States. J. Amer. Chemical Soc. 130: 16840-16841 CrossRefGoogle Scholar
  223. 223.
    Stelzer, E.H.K. 2002. Beyond the diffraction limit? Nature 417: 806-807 ADSCrossRefGoogle Scholar
  224. 224.
    Stelzer, E.H., I. Wackerand, J.R. De Mey. 1991. Confocal fluorescence microscopy in modern cell biology. Semin. Cell Biol. 2: 145-52 Google Scholar
  225. 225.
    Strehl, K. 1894. Die Theorie des Fernrohrs auf Grund der Beugung des Lichts. JA Barth, Leipzig Google Scholar
  226. 226.
    Synge, E.H. 1928. A suggested method for extending microscopic resolution into the ultra-microscopic region. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 6: 356-362 Google Scholar
  227. 227.
    Toraldo di Francia, G. 1955. Resolving power and information. J. Opt. Soc. Am. 45: 497-501 ADSCrossRefGoogle Scholar
  228. 228.
    Travis J Gould, T.J., M.S. Gunewardene, M.V. Gudheti, V.V. Verkhusha, S.-R. Yin, J.A. Gosse and S.T. Hess. 2008. Knowledge on nanoscale imaging of molecular positions and anisotropies. Nature Methods 5: 1027-1030 CrossRefGoogle Scholar
  229. 229.
    Tykocinski, L.-O., A. Sinemus, E. Rezavandy, Y. Weiland, D. Baddeley, C. Cremer, S. Sonntag, K. Willeke, J. Derbinski and B. Kyewski. 2010. Epigenetic regulation of promiscuous gene expression in thymic medullary epithelial cells. Proc. Natl. Acad. Sci. USA 107: 19426-19431 ADSCrossRefGoogle Scholar
  230. 230.
    Van Aert, S., A.J. den Dekker, D. Van Dyck and A. Van den Bos. 2007. The Notion of Resolution, in: Science of Microscopy, edited by Peter W. Hawkes, John C. H. Spence, Springer, New York, Vol. II Google Scholar
  231. 231.
    Van Aert, S., D. Van Dyck and A.J. den Dekker. 2006. Resolution of coherent and incoherent imaging systems reconsidered – Classical criteria and a statistical alternative. Optics Express 14: 3830-3839 ADSCrossRefGoogle Scholar
  232. 232.
    vande Linde, S., A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann and Markus Sauer. 2011. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nature Protocols 6: 991-1009 CrossRefGoogle Scholar
  233. 233.
    van Oijen, A.M., J. Köhler, J. Schmidt, M. Müller and G.J. Brakenhoff. 1998. 3-Dimensional super-resolution by spectrally selective imaging. Chemical Physics Letters 192: 182-187 Google Scholar
  234. 234.
    Veselago, V.G. 1968. The electrodynamics of substances with simultaneously negative values of permittivity and permeability. Sov. Phys. Usp. 10: 509 ADSCrossRefGoogle Scholar
  235. 235.
    Volkmann, H. 1966. Ernst Abbe, and His Work, Applied Optics 5: 1720-1731 ADSCrossRefGoogle Scholar
  236. 236.
    Warren, W.S., H. Rabitz and M. Dahleh. 1993. Coherent Control of Quantum Dynamics: The Dream Is Alive. Science 259: 1581-1589 MathSciNetADSMATHCrossRefGoogle Scholar
  237. 237.
    Westphal, V., S.O. Rizzoli, M.A. Lauterbach, D. Kamin, R. Jahn and S.W. Hell. 2008. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320: 246-249 ADSCrossRefGoogle Scholar
  238. 238.
    Williams, C.S. and O.A. Becklund. 1989. Introduction to the Optical Transfer Function. Wiley-Interscience, New York Google Scholar
  239. 239.
    Willig, K.I., B. Harke, R. Medda and S.W. Hell. 2007. STED microscopy with continuous wave beams. Nature Methods 4: 915-918 CrossRefGoogle Scholar
  240. 240.
    Willig, K.I., S.O. Rizzoli, V. Westphal, R. Jahn and S.W. Hell. 2006. STED-microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440: 935-939 ADSCrossRefGoogle Scholar
  241. 241.
    Wombacher, R., M. Heidbreder, M. van de Linde, P. Sheetz, M. Heilemann, V.W. Cornish and M. Sauer. 2010. Live-cell super-resolution imaging with trimethoprim conjugates. Nature Methods 7: 717-719 CrossRefGoogle Scholar
  242. 242.
    Zhuang, X. 2009. Nano-imaging with Storm. Nature Photonics 3: 365-367 ADSCrossRefGoogle Scholar
  243. 243.
    Zsigmondy, R. 1907. Über Kolloid-Chemie mit besonderer Berücksichtigung der anorganischen Kolloide, Verlag von Johann Ambrosius Barth, Leipzig Google Scholar
  244. 244.
    Zsigmondy, R. 1909. Colloids and the Ultramicroscope: A Manual of Colloid Chemistry and Ultramicroscopy, tr. Jerome Alexander, Wiley, New York Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Superresolution Microscopy, Institute of Molecular Biology (IMB)MainzGermany
  2. 2.Kirchhoff Institute of Physics (KIP), University HeidelbergHeidelbergGermany
  3. 3.Department of the History of Science, Harvard UniversityCambridgeUSA
  4. 4.Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations