The European Physical Journal H

, Volume 37, Issue 2, pp 311–318 | Cite as

The origin of quantum entanglement experiments based on polarization measurements

  • F. J. DuarteEmail author


Since the 1970s the use of polarization measurements have become standard in optical experiments designed to test the entanglement features of quantum mechanics. Here, we examine the genesis of the conceptual-theoretical and, experimental, configurations that introduced the notion of polarization measurements of quanta traveling in opposite directions. This search uncovers a number of highly relevant publications from the late 1940s that remain largely ignored and unreferenced in today’s literature.


Correct Quantum Polarization Measurement Angular Correlation Einstein Podolsky Rosen Annihilation Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aspect, A., P. Grangier and G. Roger. 1982a. Experimental realization of the Einstein-Podolsky-Rosen-Bohm gedankenexperiment : a new violation of Bell’s inequalities. Phys. Rev. Lett. 49 : 91–94 ADSCrossRefGoogle Scholar
  2. Aspect, A., P. Grangier and G. Roger. 1982b. Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49 : 1804–1807 MathSciNetADSCrossRefGoogle Scholar
  3. Bell, J.S. 1964. On the Einstein-Podolsky-Rosen paradox. Physics 1 : 195–200 Google Scholar
  4. Bleuler, E. and H.L. Bradt. 1948. Correlation between the states of polarization of the two quanta of annihilation radiation. Phys. Rev. 73 : 1398 ADSCrossRefGoogle Scholar
  5. Bohm, D. and Y. Aharonov. 1957. Discussion of experimental proof for the paradox of Einstein, Rosen and Podolsky. Phys. Rev. 108 : 1070–1076 MathSciNetADSCrossRefGoogle Scholar
  6. Bohm, D. and Y. Aharonov. 1960. Further discussion of possible experimental tests for the paradox of Einstein, Podolsky and Rosen. Nuovo Cimento 17 : 964–976 MathSciNetCrossRefGoogle Scholar
  7. Clauser, J.F. and M.A. Horne. 1974. Experimental consequences of objective local theories. Phys. Rev. D 10 : 526–535 ADSCrossRefGoogle Scholar
  8. Clauser, J.F., M.A. Horne, A. Shimony and R.A. Holt. 1969. Proposed experiment to test hidden variable theories. Phys. Rev. Lett. 23 : 880–884 ADSCrossRefGoogle Scholar
  9. Dalitz, R.H. and F.J. Duarte. 2000. John Clive Ward. Physics Today 53(10) : 99–100CrossRefGoogle Scholar
  10. Dirac, P.A.M. 1930. On the annihilation of electrons and protons. Camb. Phil. Soc. 26 : 361–375 ADSzbMATHCrossRefGoogle Scholar
  11. Dirac, P.A.M. 1978. The Principles of Quantum Mechanics, 4th edn. Oxford University, OxfordGoogle Scholar
  12. Dirac, P.A.M. 1987. The inadequacies of quantum field theory, in Paul Adrien Maurice, Dirac, edited by B.N. Kursunoglu and E.P. Wigner. Cambridge, London, Chap. 15Google Scholar
  13. Duarte, F.J. 2009. The man behind an identity in quantum electrodynamics. Aust. Phys. 46 : 171–175 Google Scholar
  14. Duncan, A.J. and H. Kleinpoppen. 1988. The experimental investigation of the Einstein-Podolsky-Rosen question and Bell’s inequality, in Quantum Mechanics Versus Local Realism, edited by F. Selleri Plenum, New York, Chap. 7Google Scholar
  15. Einstein, A., B. Podolsky and N. Rosen. 1935. Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 47 : 777–780 ADSzbMATHCrossRefGoogle Scholar
  16. Freedman, S.J. and J.F. Clauser. 1972. Experimental tests of local hidden variable theories. Phys. Rev. Lett. 28 : 938–941 ADSCrossRefGoogle Scholar
  17. Hanna, R.C. 1948. Polarization of annihilation radiation. Nature 162 : 332 ADSCrossRefGoogle Scholar
  18. Kasday, L.R., J.D. Hullman, and C.S. Wu. 1975. Angular correlation of Compton-scattered annihilation photons and hidden variables. Nuovo Cimento B 17 : 633–661 ADSCrossRefGoogle Scholar
  19. Mandel L. and E. Wolf. 1995. Optical Coherence and Quantum Optics. Cambridge University, CambridgeGoogle Scholar
  20. Peres, A. and P. Singer. 1960. On possible experimental tests for the paradox of Einstein, Podolsky and Rosen. Nuovo Cimento 15 : 907–915 MathSciNetzbMATHCrossRefGoogle Scholar
  21. Pryce, M.H.L. and J.C. Ward. 1947. Angular correlation effects with annhilation radiation. Nature 160 : 435 ADSCrossRefGoogle Scholar
  22. Sakharov, A. 1990. Memoirs, Knopf, New YorkGoogle Scholar
  23. Selleri F. (Ed.) 1988. Quantum Mechanics Versus Local Realism. Plenum, New YorkGoogle Scholar
  24. Shih, Y.H. and C.O. Alley. 1988. New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett. 61 : 2921–2924 ADSCrossRefGoogle Scholar
  25. Snyder, H.S., S. Pasternack and J. Hornbostel. 1948. Angular correlation of scattered annihilation radiation. Phys. Rev. 73 : 440–448 ADSCrossRefGoogle Scholar
  26. Ward, J.C. 1949. Some Properties of the Elementary Particles. Ph.D. Phil thesis, Oxford University, Oxford Google Scholar
  27. Ward, J.C. 2004. Memoirs of a Theoretical Physicist. Optics Journal, RochesterGoogle Scholar
  28. Wheeler, J.A. 1946. Polyelectrons. Annals of the New York Academy of Sciences 48 : 219–238 ADSCrossRefGoogle Scholar
  29. Wu, C.S. and I. Shaknov. 1950. The angular correlation of scattered annihilation radiation. Phys. Rev. 77 : 136 ADSCrossRefGoogle Scholar
  30. Yang, C.N. 1950. Selection rule for the dematerialization of a particle into two photons. Phys. Rev. 77 : 242–245 ADSzbMATHCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  1. 1.Interferometric OpticsRochesterUSA
  2. 2.University of New MexicoAlbuquerqueUSA

Personalised recommendations