Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Role of an oscillatory electric field on the Lehmann rotation of cholesteric droplets

  • 7 Accesses

Abstract.

This paper deals with the Lehmann rotation of banded cholesteric droplets subjected to a temperature gradient when they coexist with their own isotropic liquid. I show that their angular rotation velocity increases --in absolute value-- when they are subjected to an additional AC electric field in the conducting regime. This velocity increase is correlated with a prolate distortion of the droplets and the probable presence of electrohydrodynamical toroidal circulation flows inside and outside the droplets. I propose that the coupling between these flows and the director field is responsible for the increase of the angular velocity of the texture. The origin of these flows is discussed qualitatively in the framework of the leaky dielectric model by taking into account the generation of charges both in the bulk via a Carr-Helfrich mechanism (Tarasov, Krekhow and Kramer model) and at the surface of the droplet (Taylor-Melcher model).

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1

    P.G. de Gennes, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1974)

  2. 2

    P. Oswald, P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, CRC Press, Boca Raton, 2005)

  3. 3

    O. Lehmann, Ann. Phys. (Leipzig) 307, 649 (1900)

  4. 4

    P. Oswald, A. Dequidt, Phys. Rev. Lett. 100, 217802 (2008)

  5. 5

    J. Yoshioka, F. Ito, Y. Suzuki, Y. Tabe, Soft Matter 10, 5869 (2014)

  6. 6

    T. Yamamoto, M. Kuroda, M. Sano, EPL 109, 46001 (2015)

  7. 7

    J. Yoshioka, F. Araoka, Nat. Commun. 9, 432 (2018)

  8. 8

    F.M. Leslie, Proc. R. Soc. A 307, 359 (1968)

  9. 9

    P. Oswald, Eur. Phys. J. E 35, 10 (2012)

  10. 10

    P. Oswald, EPL 108, 36001 (2014) 59901(E) (2014)

  11. 11

    P. Oswald, A. Dequidt, G. Poy, Liq. Cryst. Rev. 7, 142 (2019)

  12. 12

    P. Oswald, G. Poy, Phys. Rev. E 98, 032704 (2018)

  13. 13

    P. Oswald, J. Ignés-Mullol, A. Dequidt, Soft Matter 15, 2591 (2019)

  14. 14

    G.K. Auernhammer, J. Zhao, B. Ullrich, D. Vollmer, Eur. Phys. J. E 30, 387 (2009)

  15. 15

    J. Yoshioka, K. Fukao, Phys. Rev. E 99, 022702 (2019)

  16. 16

    N.V. Madhusudana, R. Pratibha, Mol. Cryst. Liq. Cryst. 5, 43 (1987)

  17. 17

    N.V. Madhusudana, R. Pratibha, Liq. Cryst. 5, 1827 (1989)

  18. 18

    Yu.I. Timirov, O.S. Tarasov, O.A. Skaldin, Tech. Phys. Lett. 33, 209 (2007)

  19. 19

    Yu.I. Timirov, O.A. Skaldin, E.R. Basyrova, Tech. Phys. Lett. 41, 336 (2015)

  20. 20

    A. Dequidt, P. Oswald, Eur. Phys. J. E 24, 157 (2007)

  21. 21

    O.S. Tarasov, A.P. Krekhov, L. Kramer, Phys. Rev. E 68, 031708 (2003)

  22. 22

    O.S. Tarasov, A.P. Krekhov, L. Kramer, Rotation of cholesteric drops under dc electric field, preprint (2003). This paper was never published after the death of L. Kramer

  23. 23

    O. Tarasov, Stuctural Transitions and Dynamics of Liquid Crystals under Flows and Electric Fields, PhD Thesis, Bayreuth University, 2003

  24. 24

    O.A. Skaldin, O.S. Tarasov, Yu.I. Timirov, E.R. Basyrova, J. Exp. Theor. Phys. 126, 255 (2018)

  25. 25

    G.I. Taylor, Proc. R. Soc. Lond. A 291, 159 (1966)

  26. 26

    J.R. Melcher, G.I. Taylor, Annu. Rev. Fluid Mech. 1, 111 (1969)

  27. 27

    S. Torza, R.G. Cox, S.G. Mason, Philos. Trans. R. Soc. Lond. 269, 259 (1971)

  28. 28

    P. Oswald, A. Dequidt, A. Żywociński, Phys. Rev. E 77, 061703 (2008)

  29. 29

    P. Oswald, EPL 100, 26001 (2012)

  30. 30

    P. Oswald, G. poy, F. Vittoz, V. Popa-Nita, Liq. Cryst. 40, 734 (2013)

  31. 31

    G. Poy, F. Bunel, P. Oswald, Phys. Rev. E 96, 012705 (2017)

  32. 32

    P. Oswald, G. Poy, Phys. Rev. E 91, 032502 (2015)

  33. 33

    J. Baudry, S. Pirkl, P. Oswald, Phys. Rev. E 60, 2990 (1999)

  34. 34

    S. Santra, S. Mandal, S. Chakraborty, Phys. Fluids 30, 062003 (2018)

  35. 35

    S. Faetti, V. Palleschi, Phys. Rev. A 30, 3241 (1984)

  36. 36

    S. Bono, Y. Maruyamaa, K. Nishiyamaa, Y. Tabe, Mol. Cryst. Liq. Cryst. 683, 39 (2019)

  37. 37

    A.G. Petrov, G. Durand, Liq. Cryst. 17, 543 (1994)

  38. 38

    L.M. Blinov, Electro-Optical and Magneto-Optical Properties of Liquid Crystals (John Wiley & Sons, Hoboken, 1983)

  39. 39

    B.R. Ratna, R. Shashidhar, Mol. Cryst. Liq. Cryst. 6, 278 (1976)

  40. 40

    J. Thoen, G. Menu, Mol. Cryst. Liq. Cryst. 97, 163 (1983)

Download references

Author information

Correspondence to P. Oswald.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary material

Supplementary material

Supplementary material

Supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oswald, P. Role of an oscillatory electric field on the Lehmann rotation of cholesteric droplets. Eur. Phys. J. E 43, 11 (2020). https://doi.org/10.1140/epje/i2020-11935-2

Download citation

Keywords

  • Soft Matter: Liquid crystals