Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Simultaneous melting and solidification of a columnar dendritic microstructure in a temperature gradient: Numerical modeling and experiments

  • 11 Accesses

Abstract.

The microstructural evolution of a SCN-ACE alloy in a temperature gradient is studied by cellular automaton (CA) modeling and in situ experiments. The initially columnar dendrites gradually evolve to a completely solid region with a planar solid/liquid interface. The CA simulations and in situ observations present the migration of secondary dendrite arms and liquid pockets due to temperature gradient zone melting (TGZM), and the movement of the interface between a mushy zone and a fully liquid zone. The CA simulations show that the interface movement toward the lower temperature region is caused by the increasing concentration of the fully liquid region. Through updating the concentration in the fully liquid zone to the initial concentration in the CA simulation for mimicking the efficient stirring in liquid, the movement of the interface between the mushy zone and the fully liquid zone is hindered. The simulated liquid fractions and mean concentrations throughout the mushy zone decrease with time, which agree well with the analytical predictions. The simulated concentrations in the resolidified mushy zone are not higher than the temperature-dependent solidus concentrations, implying that no supersaturation remains after the mushy zone fully solidifies.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1

    M. Rettenmayr, Int. Mater. Rev. 54, 1 (2009)

  2. 2

    H. Wang, S. Li, X. Li, H. Zhong, J. Cryst. Growth 466, 56 (2017)

  3. 3

    S. Lippmann, R.H. Kemsies, M. Schick, B. Milkereit, O. Kessler, M. Rettenmayr, K. Hack, Intermetallics 105, 107 (2019)

  4. 4

    X. Ma, T. Yoshikawa, K. Morita, Sci. Adv. Mater. 6, 1697 (2014)

  5. 5

    S. Kawanishi, T. Yoshikawa, Mater. Trans. 58, 450 (2017)

  6. 6

    J.Y. Li, L. Wang, P. Ni, Y. Tan, Mater. Sci. Semicond. Process. 66, 170 (2017)

  7. 7

    H. Combeau, B. Appolaire, J. Seiler, Nucl. Eng. Des. 240, 1975 (2010)

  8. 8

    A. Löffler, K. Reuther, H. Engelhardt, D. Liu, M. Rettenmayr, Acta Mater. 91, 34 (2015)

  9. 9

    U. Bosenberg, M. Buchmann, M. Rettenmayr, J. Cryst. Growth 304, 281 (2007)

  10. 10

    S. Fischer, M. Zaloznik, J.M. Seiler, M. Rettenmayr, H. Combeau, J. Alloys Compd. 540, 85 (2012)

  11. 11

    H. Nguyen Thi, B. Drevet, J. Debierre, D. Camel, Y. Dabo, B. Billia, J. Cryst. Growth 253, 539 (2003)

  12. 12

    H. Nguyen Thi, G. Reinhart, A. Buffet, T. Schenk, N. Mangelinck-Noel, H. Jung, N. Bergeon, B. Billia, J. Härtwig, J. Baruchel, J. Cryst. Growth 310, 2906 (2008)

  13. 13

    A. Löffler, S. Lippmann, D. Liu, M. Rettenmayr, J. Cryst. Growth 408, 49 (2014)

  14. 14

    G. Salloum-Abou-Jaoude, G. Reinhart, H. Combeau, M. Založnik, T.A. Lafford, H. Nguyen-Thi, J. Cryst. Growth 411, 88 (2015)

  15. 15

    M. Buchmann, M. Rettenmayr, J. Cryst. Growth 284, 544 (2005)

  16. 16

    D.M. Liu, X.Z. Li, Y.Q. Su, P. Peng, L.S. Luo, J.J. Guo, H.Z. Fu, Acta Mater. 60, 2679 (2012)

  17. 17

    H. Engelhardt, D. Mey, S. Lippmann, D.M. Liu, S. Kiefer, M. Rettenmayr, J. Cryst. Growth 506, 97 (2019)

  18. 18

    Q. Zhang, H. Xue, Q. Tang, S. Pan, M. Rettenmayr, M. Zhu, Comput. Mater. Sci. 146, 204 (2018)

  19. 19

    S. Pan, Q. Zhang, M. Zhu, M. Rettenmayr, Acta Mater. 86, 229 (2015)

  20. 20

    H. Xing, M. Ji, X. Dong, Y. Wang, L. Zhang, S. Li, Mater. Des. 185, 108250 (2020)

  21. 21

    A.B. Phillion, M. Zaloznik, I. Spindler, N. Pinter, C.A. Aledo, G. Salloum-Abou-Jaoude, H.N. Thi, G. Reinhart, G. Boussinot, M. Apel, H. Combeau, Acta Mater. 141, 206 (2017)

  22. 22

    H. Xing, K. Ankit, X. Dong, H. Chen, K. Jin, Int. J. Heat Mass Transfer 117, 1107 (2018)

  23. 23

    D. Sun, H. Xing, X. Dong, Y. Han, Int. J. Heat Mass Transfer 133, 1240 (2019)

  24. 24

    H. Fang, Q. Tang, Q. Zhang, T. Gu, M. Zhu, Int. J. Heat Mass Transfer 133, 371 (2019)

  25. 25

    D. Sun, S. Pan, Q. Han, B. Sun, Int. J. Heat Mass Transfer 103, 821 (2016)

  26. 26

    J. Li, C. Guo, Y. Ma, Z. Wang, J. Wang, Acta Mater. 90, 10 (2015)

  27. 27

    H. Neumann-Heyme, K. Eckert, C. Beckermann, Acta Mater. 140, 87 (2017)

  28. 28

    G. Boussinot, M. Apel, Acta Mater. 122, 310 (2017)

  29. 29

    Q. Zhang, H. Fang, H. Xue, Q. Tang, S. Pan, M. Rettenmayr, M. Zhu, Scr. Mater. 151, 28 (2018)

  30. 30

    Q. Zhang, H. Fang, H. Xue, S. Pan, M. Rettenmayr, M. Zhu, Sci. Rep. 7, 17809 (2017)

Download references

Author information

Correspondence to Qingyu Zhang.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiang, C., Zhang, Q., Sun, D. et al. Simultaneous melting and solidification of a columnar dendritic microstructure in a temperature gradient: Numerical modeling and experiments. Eur. Phys. J. E 43, 5 (2020). https://doi.org/10.1140/epje/i2020-11930-7

Download citation

Keywords

  • Topical issue: Branching Dynamics at the Mesoscopic Scale