Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

A numerical investigation on the unidirectional unsteady oscillatory wind flow over a fixed isolated downsized barchan dune

  • 11 Accesses

Abstract.

Turbulent wind patterns over a two-dimensional isolated downsized barchan dune under the influence of sinusoidal inflow with different amplitudes and periods are simulated. The evolution rules of wind velocity over time at different positions are revealed. The flow reattachment distance and turbulence intensity distribution are also compared. The results show that wind velocities at different positions of the dune whose similar evolvement process of going from short-term fast adjustment transition to long-term stable sinusoidal fluctuation, can be reasonably estimated by the present simulation. It is found that, for the leeward toe of a dune with complex reversed flow, the balance position value of the sinusoidal wind velocity fluctuation is no longer close to the value of the steady wind velocity but shows a velocity deviation of about 0.40m/s. The flow reattachment distances under different unsteady inflows ultimately show a sinusoidal fluctuation with time, and their values are all larger than that of the steady flow. These synthetically predict that the unsteady flow has a stronger shaping effect on the leeward side of the dune body by enhancing sand transport. In addition, the predicted distribution comparison between unsteady wind velocity and turbulence intensity indicates that the unsteady wind velocity has a dominant effect on the turbulence intensity.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1

    R.A. Bagnold, The Physics of Blown Sand and Desert Dunes (Methuen, London, 1941)

  2. 2

    G.F.S. Wiggs, Prog. Phys. Geogr. 25, 53 (2001)

  3. 3

    I.J. Walker, W.G. Nickling, Prog. Phys. Geogr. 26, 47 (2002)

  4. 4

    I. Livingstone, G.F.S. Wiggs, C.M. Weaver, Earth-Sci. Rev. 80, 239 (2007)

  5. 5

    C.M. Weaver, G.F.S. Wiggs, Geomorphology 128, 32 (2011)

  6. 6

    G.F.S. Wiggs, Sediment mobilisation by the wind, in Arid Zone Geomorphology: Process, Form and Change in Drylands (Wiley Blackwell, 2011) pp. 455--486

  7. 7

    G.F.S. Wiggs, C.M. Weaver, Geophys. Res. Lett. 39, L05404 (2012)

  8. 8

    G.R. Butterfield, Acta Mech. Suppl. 1, 97 (1991)

  9. 9

    G.R. Butterfield, Sand transport response to fluctuating wind velocity, in Turbulence: Perspectives on Flow and Sediment Transport, edited by N.J. Clifford, J.R. French, J. Hardisty (John Wiley & Sons, Ltd, Chichester, 1993)

  10. 10

    G.R. Butterfield, J. Arid Environ. 39, 377 (1998)

  11. 11

    P.J. Spies, I.K. Mcewan, G.R. Butterfield, Earth Surf. Process. Landf. 25, 505 (2000)

  12. 12

    C.M. Neuman, N. Lancaster, W.G. Nickling, Sedimentology 47, 211 (2000)

  13. 13

    B.L. Li, C.M. Neuman, Geomorphology 214, 261 (2014)

  14. 14

    P. Wang, X.J. Zheng, Eur. Phys. J. E 37, 40 (2014)

  15. 15

    P. Wang, X.J. Zheng, Icarus 260, 161 (2015)

  16. 16

    K. Pye, H. Tsoar, Aeolian Sand and Sand Dunes (Springer, Berlin, 2009)

  17. 17

    G.F.S. Wiggs, Dune morphology and dynamics, in Treatise on Geomorphology, edited by J. Shroder, N. Lancaster, D.J. Sherman, A.C.W. Baas, Vol. 11: Aeolian Geomorphology (Academic Press, San Diego, CA, 2013) pp. 201--218

  18. 18

    S.C.D. Pont, C.R. Phys. 16, 118 (2015)

  19. 19

    P. Hersen, S. Douady, B. Andreotti, Phys. Rev. Lett. 89, 264301 (2002)

  20. 20

    N. Endo, K. Taniguchi, A. Katsuki, Geophys. Res. Lett. 31, L12503 (2004)

  21. 21

    P. Hersen, Morphogenesis and dynamics of barchan dunes, PhD Thesis, Université Paris-Diderot - Paris VII, Paris, France, 2004

  22. 22

    P. Hersen, J. Geophys. Res. 110, F04S07 (2005)

  23. 23

    C. Groh, A. Wierschem, N. Aksel, I. Rehberg, C.A. Kruelle, Phys. Rev. E 78, 021304 (2008)

  24. 24

    E.M. Franklin, F. Charru, J. Fluid. Mech. 675, 199 (2011)

  25. 25

    R. Greeley, J.R. Marshall, R.N. Leach, Icarus 60, 152 (1984)

  26. 26

    J.R. Marshall, R. Greeley, J. Geophys. Res. 97, 1007 (1992)

  27. 27

    I.J. Walker, W.G. Nickling, Earth Surf. Process. Landf. 28, 1111 (2003)

  28. 28

    Z.B. Dong, G.Q. Qian, W.Y. Luo, H.T. Wang, J. Geophys. Res. 112, F03019 (2007)

  29. 29

    Z.B. Dong, G.Q. Qian, P. Lu, W.Y. Luo, H.T. Wang, Earth Surf. Process. Landf. 34, 204 (2009)

  30. 30

    G. Qian, Z. Dong, W. Luo, H. Wang, J. Arid Environ. 73, 1109 (2009)

  31. 31

    R. Faria, A.D. Ferreira, J.L. Sismeiro, J.C.F. Mendes, A.C.M. Sousa, Aeolian Res. 3, 303 (2011)

  32. 32

    J.A. Palmer, R. Mejia-Alvarez, J.L. Best, K.T. Christensen, Exp. Fluids 52, 809 (2012)

  33. 33

    B. Andreotti, P. Claudin, S. Douady, Eur. Phys. J. B 28, 321 (2002)

  34. 34

    Y. Zhang, Y. Wang, P. Jia, Sci. China Phys. Mech. 57, 143 (2014)

  35. 35

    Y. Zhang, Y. Wang, X.S. Zhou, B. Yang, J. Arid Land 9, 270 (2017)

  36. 36

    D.R. Parsons, I.J. Walker, G.F.S. Wiggs, Geomorphology 59, 149 (2004)

  37. 37

    D.R. Parsons, G.F.S. Wiggs, I.J. Walker, R.I. Ferguson, B.G. Garvey, Environ. Model. Softw. 19, 153 (2004)

  38. 38

    B.L. Liu, J.J. Qu, W.M. Zhang, G.Q. Qian, J. Wind Eng. Ind. Aerodyn. 99, 879 (2011)

  39. 39

    L. Bruno, D. Fransos, J. Wind Eng. Ind. Aerodyn. 147, 291 (2015)

  40. 40

    X.S. Zhou, Y. Zhang, Y. Wang, M. Li, Aeolian Res. 21, 45 (2016)

  41. 41

    I.J. Walker, P.A. Hesp, Fundamentals of aeolian sediment transport: airflow over dunes, in Treatise on Geomorphology, edited by J. Shroder, N. Lancaster, D.J. Sherman, A.C.W. Baas, Vol. 11: Aeolian Geomorphology (Academic Press, San Diego, CA, 2013) pp. 109--133

  42. 42

    T.A.G. Smyth, Aeolian Res. 22, 153 (2016)

  43. 43

    F. Shi, N. Huang, Environ. Model. Softw. 25, 362 (2010)

  44. 44

    N. Huang, Z.S. Wang, Aeolian Res. 23, 1 (2016)

  45. 45

    W. He, N. Huang, B. Xu, W.B. Wang, Eur. Phys. J. E 41, 53 (2018)

  46. 46

    V. Schatz, H.J. Herrmann, Geomorphology 81, 207 (2006)

  47. 47

    A.D. Araujo, E.J.R. Parteli, T. Poschel, J.S. Andrade Jr., H.J. Herrmann, Sci. Rep. 3, 2858 (2013)

  48. 48

    V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski, C.G. Speziale, Phys. Fluids A 4, 1510 (1992)

  49. 49

    V. Yakhot, S.A. Orszag, J. Sci. Comput. 1, 3 (1986)

  50. 50

    J.P. Van Doormaal, G.D. Raithby, Numer. Heat Transfer 7, 147 (1984)

  51. 51

    S.V. Patankar, D.B. Spalding, Int. J. Heat Mass Transfer 15, 1787 (1972)

  52. 52

    K. Kroy, G. Sauermann, H.J. Herrmann, Phys. Rev. E 66, 031302 (2002)

  53. 53

    B. Andreotti, P. Claudin, S. Douady, Eur. Phys. J. B 28, 341 (2002)

  54. 54

    S. Fischer, M.E. Cates, K. Kroy, Phys. Rev. E 77, 031302 (2008)

  55. 55

    M.C. Baddock, G.F.S. Wiggs, I. Livingstone, Earth Surf. Process. Landf. 36, 1435 (2011)

  56. 56

    S.E. Kim, D. Choudhury, A near-wall treatment using wall functions sensitized to pressure gradient, in ASME FED, Vol. 217 (ASME, 1995) pp. 273--280

  57. 57

    B.E. Launder, D.B. Spalding, Comput. Methods Appl. Mech. Eng. 3, 269 (1974)

  58. 58

    L. Wang, Y. Wang, D.W. Wang, J. Exp. Fluid Mech. 24, 15 (2010) (in Chinese)

  59. 59

    E.J.R. Parteli, K. Kroy, H. Tsoar, J.S. Andrade Jr., T. Poschel, Eur. Phys. J. ST 223, 2269 (2014)

  60. 60

    H. Jiang, H.C. Dun, D. Tong, N. Huang, Geomorphology 283, 41 (2017)

Download references

Author information

Correspondence to Bin Yang.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Zhang, B., Su, Y. et al. A numerical investigation on the unidirectional unsteady oscillatory wind flow over a fixed isolated downsized barchan dune. Eur. Phys. J. E 43, 3 (2020). https://doi.org/10.1140/epje/i2020-11928-1

Download citation

Keywords

  • Flowing Matter: Liquids and Complex Fluids