Advertisement

Viscosity of nanofluids containing anisotropic particles: A critical review and a comprehensive model

  • Xuemin Ye
  • Satish G. KandlikarEmail author
  • Chunxi Li
Topical Review
  • 39 Downloads

Abstract.

Compared to nanofluids with spherical particles, nanofluids with anisotropic particles possess higher thermal conductivity and present a better enhancement option in heat transfer applications. The viscosity variation of such nanofluids becomes of great importance in evaluating their pumping power in thermal systems. This paper presents a comprehensive review of the experimental and theoretical studies on the viscosity of nanofluids with anisotropic particles. The internal mechanisms of viscosity evolution are investigated considering three aspects: particle clustering, particle interactions, and Brownian motion. In experimental studies, important factors including classification and synthetic methods for particle preparation, base fluid, particle loading, particle shape and size, temperature, p H, shear stress and electric field are investigated in detail. Classical theoretical models and empirical relations of the effective viscosity of suspensions are discussed. Some crucial factors such as maximum particle packing fraction, fractal index and intrinsic viscosity models, are examined. A comparison of predictions and experimental results shows that the classical models underestimate suspension viscosity. A comprehensive combination of the modified Krieger-Dougherty (K-D) model with intrinsic viscosity relations for different aspect ratios is suggested for low particle loadings, and the modified Maron-Pierce model (M-D) is recommended for high particle loadings. Possible directions for future works are discussed.

Graphical abstract

Keywords

Flowing Matter: Liquids and Complex Fluids 

Notes

Author contribution statement

Satish G. Kandlikar and Xuemin Ye designed work concept; Xuemin Ye and Chunxi Li wrote the manuscript.

References

  1. 1.
    S. Özerinç, S. Kakaç, A.G. Yazicioğlu, Microfluid. Nanofluid. 8, 145 (2009)CrossRefGoogle Scholar
  2. 2.
    S.U. Choi, J.A. Eastman, Fluids Engineering Division (ASME, IL, USA, 1995)Google Scholar
  3. 3.
    N. Masoumi, N. Sohrabi, A. Behzadmehr, J. Phys. D 42, 055501 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    M. Chopkar, S. Kumar, D. Bhandari et al., Mater. Sci. Eng. B 139, 141 (2007)CrossRefGoogle Scholar
  5. 5.
    M.B. Kim, H.G. Park, C.Y. Park, Int. J. Air-Cond. Refrig. 26, 1850009 (2018)CrossRefGoogle Scholar
  6. 6.
    H. Masuda, A. Ebata, K. Teramae, Netsu Bussei 7, 227 (1993)CrossRefGoogle Scholar
  7. 7.
    B.C. Pak, Y.I. Cho, Exp. Heat Transf. 11, 151 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    F.M. van der Kooij, E.S. Boek, A.P. Philipse, J. Colloid Interface Sci. 235, 344 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    S.M.S. Murshed, K.C. Leong, C. Yang, Int. J. Therm. Sci. 44, 367 (2005)CrossRefGoogle Scholar
  10. 10.
    E.V. Timofeeva, J.L. Routbort, D. Singh, J. Appl. Phys. 106, 014304 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    H. Chen, S. Witharana, Y. Jin et al., Particuology 7, 151 (2009)CrossRefGoogle Scholar
  12. 12.
    A. Turgut, I. Tavman, M. Chirtoc et al., Int. J. Thermophys. 30, 1213 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    J. Buongiorno, D.C. Venerus, N. Prabhat et al., J. Appl. Phys. 106, 094312 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    S. Kim, C. Kim, W.H. Lee et al., J. Appl. Phys. 110, 034316 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    S. Kim, C. Kim, Korea-Aust. Rheol. J. 24, 65 (2012)CrossRefGoogle Scholar
  16. 16.
    S. Ferrouillat, A. Bontemps, O. Poncelet et al., Int. J. Mech. Ind. Eng. 1, 7 (2011)Google Scholar
  17. 17.
    M. Farbod, R. Kouhpeymani asl, A.R. Noghreh abadi, Colloids Surf. A: Physicochem. Eng. Asp. 474, 71 (2015)CrossRefGoogle Scholar
  18. 18.
    L.S. Sundar, M.H. Farooky, S.N. Sarada et al., Int. Commun. Heat Mass Transfer 41, 41 (2013)CrossRefGoogle Scholar
  19. 19.
    P. Feng, Q. Wan, X.Q. Fu et al., Appl. Phys. Lett. 87, 033114 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    V. Badescu, L. Udrea, O. Rotariu et al., J. Phys. 149, 012101 (2009)Google Scholar
  21. 21.
    T. Kitano, T. Kataoka, T. Nishimura et al., Rheol. Acta 19, 764 (1980)CrossRefGoogle Scholar
  22. 22.
    T. Kitano, T. Kataoka, T. Shirota, Rheol. Acta 20, 207 (1981)CrossRefGoogle Scholar
  23. 23.
    M. Assael, C.F. Chen, I. Metaxa et al., Int. J. Thermophys. 25, 971 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    D. Wen, Y. Ding, J. Thermophys. Heat Transfer 18, 481 (2004)CrossRefGoogle Scholar
  25. 25.
    Y. Ding, H. Alias, D. Wen et al., Int. J. Heat Mass Transfer 49, 240 (2006)CrossRefGoogle Scholar
  26. 26.
    Y. Yang, E.A. Grulke, Z.G. Zhang et al., J. Appl. Phys. 99, 114307 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    H. Chen, Y. Ding, C. Tan, New J. Phys. 9, 367 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    H. Chen, Y. Ding, A. Lapkin et al., J. Nanopart. Res. 11, 1513 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    N. Jha, S. Ramaprabhu, J. Appl. Phys. 106, 084317 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    A. Amrollahi, A.M. Rashidi, R. Lotfi et al., Int. Commun. Heat Mass Transfer 37, 717 (2010)CrossRefGoogle Scholar
  31. 31.
    S. Sen Gupta, V. Manoj Siva, S. Krishnan et al., J. Appl. Phys. 110, 084302 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    S. Bobbo, L. Fedele, A. Benetti et al., Exp. Therm. Fluid Sci. 36, 65 (2012)CrossRefGoogle Scholar
  33. 33.
    G. Vakili-Nezhaad, A. Dorany, Energy Proc. 14, 512 (2012)CrossRefGoogle Scholar
  34. 34.
    S. Halelfadl, P. Estelle, B. Aladag et al., Int. J. Therm. Sci. 71, 111 (2013)CrossRefGoogle Scholar
  35. 35.
    B. Jo, D. Banerjee, Mater. Lett. 122, 212 (2014)CrossRefGoogle Scholar
  36. 36.
    X. Li, Y. Chen, S. Mo et al., Thermochim. Acta 595, 6 (2014)CrossRefGoogle Scholar
  37. 37.
    M. Baratpour, A. Karimipour, M. Afrand et al., Int. Commun. Heat Mass Transfer 74, 108 (2016)CrossRefGoogle Scholar
  38. 38.
    C. Lin, J.W. Shan, Phys. Fluids 22, 022001 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    J. Yin, X. Zhao, Colloids Surf. A: Physicochem. Eng. Asp. 329, 153 (2008)CrossRefGoogle Scholar
  40. 40.
    C. Lin, J.W. Shan, Phys. Fluids 22, 022001 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    J. Yin, X. Zhao, X. Xia et al., Polymer 49, 4413 (2008)CrossRefGoogle Scholar
  42. 42.
    X. Xia, J. Yin, P. Qiang et al., Polymer 52, 786 (2011)CrossRefGoogle Scholar
  43. 43.
    H.Q. Xie, J.C. Wang, T.G. Xi et al., Int. J. Thermophys. 23, 571 (2002)CrossRefGoogle Scholar
  44. 44.
    S. Ferrouillat, A. Bontemps, O. Poncelet et al., Appl. Therm. Eng. 51, 839 (2013)CrossRefGoogle Scholar
  45. 45.
    S.S. Bhandari, K. Muralidhar, Y.M. Joshi, Ind. Eng. Chem. Res. 52, 15114 (2013)CrossRefGoogle Scholar
  46. 46.
    J.P. Meyer, S.A. Adio, M. Sharifpur et al., Heat Transfer Eng. 37, 387 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    P.C. Mishra, S. Mukherjee, S.K. Nayak et al., Int. Nano Lett. 4, 109 (2014)CrossRefGoogle Scholar
  48. 48.
    M. Gupta, V. Singh, R. Kumar et al., Renew. Sustain. Energy Rev. 74, 638 (2017)CrossRefGoogle Scholar
  49. 49.
    R. Prasher, D. Song, J. Wang et al., Appl. Phys. Lett. 89, 133108 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    V.Y. Rudyak, A.V. Minakov, Eur. Phys. J. E 41, 15 (2018)CrossRefGoogle Scholar
  51. 51.
    K. Leong, R. Saidur, S. Kazi et al., Appl. Therm. Eng. 30, 2685 (2010)CrossRefGoogle Scholar
  52. 52.
    R. Saidur, K. Leong, H. Mohammad, Renew. Sustain. Energy Rev. 15, 1646 (2011)CrossRefGoogle Scholar
  53. 53.
    R. Saidur, T. Meng, Z. Said et al., Int. J. Heat Mass Transfer 55, 5899 (2012)CrossRefGoogle Scholar
  54. 54.
    D. Zang, X. Wang, X. Geng et al., Soft Matter 9, 394 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    R. Patel, Eur. Phys. J. E 35, 109 (2012)CrossRefGoogle Scholar
  56. 56.
    L.S. Sundar, K.V. Sharma, M.T. Naik et al., Renew. Sustain. Energy Rev. 25, 670 (2013)CrossRefGoogle Scholar
  57. 57.
    S.S. Murshed, C.N. De Castro, Nanofluids: Synthesis, Properties, and Applications (Nova Science Publishers, Inc., 2014)Google Scholar
  58. 58.
    S.-S. Hsieh, H.-Y. Leu, H.-H. Liu, Nanoscale Res. Lett. 10, 139 (2015)ADSCrossRefGoogle Scholar
  59. 59.
    Z. Said, R. Saidur, M. Sabiha et al., J. Clean. Prod. 112, 3915 (2016)CrossRefGoogle Scholar
  60. 60.
    S.M.S. Murshed, P. Estelle, Renew. Sustain. Energy Rev. 76, 1134 (2017)CrossRefGoogle Scholar
  61. 61.
    I.M. Mahbubul, R. Saidur, M.A. Amalina, Int. J. Heat Mass Transfer 55, 874 (2012)CrossRefGoogle Scholar
  62. 62.
    P.N. Nwosu, J. Meyer, M. Sharifpur, J. Nanotechnol. Eng. Med. 5, 031008 (2014)CrossRefGoogle Scholar
  63. 63.
    P.M. Kumar, J. Kumar, S. Suresh, Int. J. Eng. Innov. Res. 1, 128 (2012)Google Scholar
  64. 64.
    L. Yang, J. Xu, K. Du et al., Powder Technol. 317, 348 (2017)CrossRefGoogle Scholar
  65. 65.
    J. Yin, X. Zhao, Nanoscale Res. Lett. 6, 256 (2011)ADSCrossRefGoogle Scholar
  66. 66.
    P.M. Kumar, J. Kumar, R. Tamilarasan et al., Eng. J. 19, 67 (2015)CrossRefGoogle Scholar
  67. 67.
    K. Bashirnezhad, S. Bazri, M.R. Safaei et al., Int. Commun. Heat Mass Transfer 73, 114 (2016)CrossRefGoogle Scholar
  68. 68.
    W.H. Azmi, K.V. Sharma, R. Mamat et al., Renew. Sustain. Energy Rev. 53, 1046 (2016)CrossRefGoogle Scholar
  69. 69.
    D.K. Devendiran, V.A. Amirtham, Renew. Sustain. Energy Rev. 60, 21 (2016)CrossRefGoogle Scholar
  70. 70.
    A. Ghadimi, R. Saidur, H.S.C. Metselaar, Int. J. Heat Mass Transfer 54, 4051 (2011)CrossRefGoogle Scholar
  71. 71.
    Y. Li, J.e. Zhou, S. Tung et al., Powder Technol. 196, 89 (2009)CrossRefGoogle Scholar
  72. 72.
    H.D. Koca, S. Doganay, A. Turgut et al., Renew. Sustain. Energy Rev. 82, 1664 (2018)CrossRefGoogle Scholar
  73. 73.
    K.H. Solangi, S.N. Kazi, M.R. Luhur et al., Energy 89, 1065 (2015)CrossRefGoogle Scholar
  74. 74.
    M.U. Sajid, H.M. Ali, Int. J. Heat Mass Transfer 126, 211 (2018)CrossRefGoogle Scholar
  75. 75.
    A.K. Sharma, A.K. Tiwari, A.R. Dixit, Renew. Sustain. Energy Rev. 53, 779 (2016)CrossRefGoogle Scholar
  76. 76.
    E. Ganani, R.L. Powell, J. Rheol. 30, 995 (1986)ADSCrossRefGoogle Scholar
  77. 77.
    W. Pabst, E. Gregorová, C. Berthold, J. Eur. Ceram. Soc. 26, 149 (2006)CrossRefGoogle Scholar
  78. 78.
    L. Chen, H. Xie, Y. Li et al., Thermochim. Acta 477, 21 (2008)CrossRefGoogle Scholar
  79. 79.
    L. Chen, H. Xie, W. Yu et al., J. Dispers. Sci. Technol. 32, 550 (2011)CrossRefGoogle Scholar
  80. 80.
    T.X. Phuoc, M. Massoudi, R.-H. Chen, Int. J. Therm. Sci. 50, 12 (2011)CrossRefGoogle Scholar
  81. 81.
    S. Harish, K. Ishikawa, E. Einarsson et al., Mater. Express 2, 213 (2012)CrossRefGoogle Scholar
  82. 82.
    Y.-H. Hung, W.-C. Chou, Int. J. Chem. Eng. Appl. 3, 347 (2012)Google Scholar
  83. 83.
    R. Sadri, G. Ahmadi, H. Togun et al., Nanoscale Res. Lett. 9, 151 (2014)ADSCrossRefGoogle Scholar
  84. 84.
    E.V. Timofeeva, W. Yu, D.M. France et al., Nanoscale Res. Lett. 6, 182 (2011)ADSCrossRefGoogle Scholar
  85. 85.
    H.A. Barnes, J.F. Hutton, K. Walters, An Introduction to Rheology (Elsevier, UK, 1989)Google Scholar
  86. 86.
    H. Xie, H. Lee, W. Youn et al., J. Appl. Phys. 94, 4967 (2003)ADSCrossRefGoogle Scholar
  87. 87.
    M. Liu, C. Ding, J. Wang, R. Soc. Chem. Adv. 6, 3571 (2016)Google Scholar
  88. 88.
    C.-W. Nan, G. Liu, Y. Lin et al., Appl. Phys. Lett. 79, 3549 (2004)ADSCrossRefGoogle Scholar
  89. 89.
    T.C. Clancy, T.S. Gates, Polymer 47, 5990 (2006)CrossRefGoogle Scholar
  90. 90.
    L. Chen, H. Xie, Thermochim. Acta 497, 67 (2010)CrossRefGoogle Scholar
  91. 91.
    S.U.S. Choi, Z.G. Zhang, W. Yu et al., Appl. Phys. Lett. 79, 2252 (2001)ADSCrossRefGoogle Scholar
  92. 92.
    L. Yu, D. Liu, F. Botz, Exp. Therm. Fluid Sci. 37, 72 (2012)CrossRefGoogle Scholar
  93. 93.
    B. Yang, Z.H. Han, Appl. Phys. Lett. 89, 083111 (2006)ADSCrossRefGoogle Scholar
  94. 94.
    S. Mueller, E.W. Llewellin, H.M. Mader, Proc. R. Soc. A: Math. Phys. 466, 1201 (2010)ADSCrossRefGoogle Scholar
  95. 95.
    R. Simha, J. Phys. Chem. C 44, 25 (1940)CrossRefGoogle Scholar
  96. 96.
    H. Brenner, D.W. Condiff, J. Colloid Interface Sci. 47, 199 (1974)ADSCrossRefGoogle Scholar
  97. 97.
    W. Kuhn, H. Kuhn, P. Buchner, Hydrodynamisches verhalten von makromolekülen in lösung (Springer, Berlin, Heidelberg, 1951)Google Scholar
  98. 98.
    W. Kuhn, H. Kuhn, Helv. Chim. Acta 28, 97 (1945)CrossRefGoogle Scholar
  99. 99.
    J.W. Gao, R.T. Zheng, H. Ohtani et al., Nano Lett. 9, 4128 (2009)ADSCrossRefGoogle Scholar
  100. 100.
    G.K. Batchelor, J. Fluid Mech. 83, 97 (1977)ADSMathSciNetCrossRefGoogle Scholar
  101. 101.
    I.M. Krieger, T.J. Dougherty, Trans. Soc. Rheol. 3, 137 (1959)CrossRefGoogle Scholar
  102. 102.
    D.J. Jeffrey, A. Acrivos, AIChE J. 22, 417 (1976)CrossRefGoogle Scholar
  103. 103.
    Y. Xuan, Q. Li, W. Hu, AIChE J. 49, 1038 (2003)CrossRefGoogle Scholar
  104. 104.
    K. Anoop, S. Kabelac, T. Sundararajan et al., J. Appl. Phys. 106, 034909 (2009)ADSCrossRefGoogle Scholar
  105. 105.
    Gaganpreet, S. Srivastava, Phys. Chem. Liq. 53, 174 (2014)CrossRefGoogle Scholar
  106. 106.
    R.G. Larson, The Structure and Rheology of Complex Fluids (Topics in Chemical Engineering) (Oxford University Press, New York, 1999)Google Scholar
  107. 107.
    J. Zhao, Y. Duan, X. Wang et al., J. Nanopart. Res. 13, 5033 (2011)ADSCrossRefGoogle Scholar
  108. 108.
    G.B. Jeffrey, Proc. R. Soc. London A 102, 161 (1923)ADSCrossRefGoogle Scholar
  109. 109.
    A. Einstein, Ann. Phys. 324, 289 (1906)CrossRefGoogle Scholar
  110. 110.
    A. Einstein, Ann. Phys. 339, 591 (1911)CrossRefGoogle Scholar
  111. 111.
    P. Keblinski, J.A. Eastman, D.G. Cahill, Mater. Today 8, 36 (2005)CrossRefGoogle Scholar
  112. 112.
    Y. Ding, H. Chen, L. Wang et al., KONA Powder Part. J. 25, 23 (2007)CrossRefGoogle Scholar
  113. 113.
    H. Zhu, C. Zhang, S. Liu et al., Appl. Phys. Lett. 89, 023123 (2006)ADSCrossRefGoogle Scholar
  114. 114.
    P. Estelle, S. Halelfadl, N. Doner et al., Curr. Nanosci. 9, 225 (2013)ADSCrossRefGoogle Scholar
  115. 115.
    H. Chen, W. Yang, Y. He et al., Powder Technol. 183, 63 (2008)CrossRefGoogle Scholar
  116. 116.
    Z.-s. Hong, Y. Cao, J.-f. Deng, Mater. Lett. 52, 34 (2002)CrossRefGoogle Scholar
  117. 117.
    G. Du, G. Van Tendeloo, Chem. Phys. Lett. 393, 64 (2004)ADSCrossRefGoogle Scholar
  118. 118.
    M. Cao, Y. Wang, C. Guo et al., J. Nanosci. Nanotechnol. 4, 824 (2004)CrossRefGoogle Scholar
  119. 119.
    A.M. Rashidi, M.M. Akbarnejad, A.A. Khodadadi et al., Nanotechnology 18, 315605 (2007)CrossRefGoogle Scholar
  120. 120.
    S. Maruyama, R. Kojima, Y. Miyauchi et al., Chem. Phys. Lett. 360, 229 (2002)ADSCrossRefGoogle Scholar
  121. 121.
    L. Yu, D. Liu, F. Botz, ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems (ASME, Oregon, USA, 2011)Google Scholar
  122. 122.
    R. Prasher, P. Bhattacharya, P.E. Phelan, J. Heat Transfer 128, 588 (2006)CrossRefGoogle Scholar
  123. 123.
    C.T. Wamkam, M.K. Opoku, H. Hong et al., J. Appl. Phys. 109, 024305 (2011)ADSCrossRefGoogle Scholar
  124. 124.
    R. Prasher, P.E. Phelan, P. Bhattacharya, Nano Lett. 6, 1529 (2006)ADSCrossRefGoogle Scholar
  125. 125.
    S.W. Lee, S.D. Park, S. Kang et al., Int. J. Heat Mass Transfer 54, 433 (2011)CrossRefGoogle Scholar
  126. 126.
    R. Taylor, S. Coulombe, T. Otanicar et al., J. Appl. Phys. 113, 1 (2013)CrossRefGoogle Scholar
  127. 127.
    P. Garg, J.L. Alvarado, C. Marsh et al., Int. J. Heat Mass Transfer 52, 5090 (2009)CrossRefGoogle Scholar
  128. 128.
    Y. Yang, A. Oztekin, S. Neti et al., J. Nanopart. Res. 14, 852 (2012)ADSCrossRefGoogle Scholar
  129. 129.
    J.P. Coulter, K.D. Weiss, J.D. Carlson, J. Intell. Mater. Syst. Struct. 4, 248 (1993)CrossRefGoogle Scholar
  130. 130.
    B. Cetin, H.I. Unal, O. Erol, Smart Mater. Struct. 21, 125011 (2012)ADSCrossRefGoogle Scholar
  131. 131.
    M.M. Ramos-Tejada, M.J. Espin, R. Perea et al., J. Non-Newton. Fluid Mech. 159, 34 (2009)CrossRefGoogle Scholar
  132. 132.
    R. Simha, J. Chem. Phys. 13, 188 (1945)ADSCrossRefGoogle Scholar
  133. 133.
    M. Mooney, J. Colloid Sci. 6, 162 (1951)CrossRefGoogle Scholar
  134. 134.
    H.J. Choi, T.M. Kwon, M.S. Jhon, J. Mater. Sci. 35, 889 (2000)ADSCrossRefGoogle Scholar
  135. 135.
    D.H. Berry, W.B. Russel, J. Fluid Mech. 180, 475 (1987)ADSCrossRefGoogle Scholar
  136. 136.
    H.A. Barnes, R. Soc. Chem. 26, 36 (1981)Google Scholar
  137. 137.
    J.W. Goodwin, R.W. Hughes, Rheology for Chemists: An Introduction (Royal Society of Chemistry, Cambridge, UK, 2000)Google Scholar
  138. 138.
    R. Prasher, W. Evans, P. Meakin et al., Appl. Phys. Lett. 89, 143119 (2006)ADSCrossRefGoogle Scholar
  139. 139.
    B. Wang, L. Zhou, X. Peng, Int. J. Heat Mass Transfer 46, 2665 (2003)CrossRefGoogle Scholar
  140. 140.
    S.H. Maron, P.E. Pierce, J. Colloid Sci. 11, 80 (1956)CrossRefGoogle Scholar
  141. 141.
    R.M. Turian, T.F. Yuan, AIChE J. 23, 232 (1977)CrossRefGoogle Scholar
  142. 142.
    J.F. Clarke, IMA J. Appl. Math. 3, 347 (1967)CrossRefGoogle Scholar
  143. 143.
    H. Giesekus, Disperse Systems: Dependence of Rheological Properties on the Type of Flow with Implications for Food Rheology (Applied Science Publishers, London, 1983)Google Scholar
  144. 144.
    C.D. de Kruif, E.M.F. Van Iersel, A. Vrij et al., J. Chem. Phys. 83, 4717 (1985)ADSCrossRefGoogle Scholar
  145. 145.
    C. Chang, R.L. Powell, Phys. Fluids 6, 1628 (1994)ADSCrossRefGoogle Scholar
  146. 146.
    W. Haas, M. Zrinyi, H.-G. Kilian et al., Colloid Polym. Sci. 271, 1024 (1993)CrossRefGoogle Scholar
  147. 147.
    T. Waite, J. Cleaver, J. Beattie, J. Colloid Interface Sci. 241, 333 (2001)ADSCrossRefGoogle Scholar
  148. 148.
    A. Mohraz, D.B. Moler, R.M. Ziff et al., Phys. Rev. Lett. 92, 155503 (2004)ADSCrossRefGoogle Scholar
  149. 149.
    E.K. Hobbie, D.J. Fry, Phys. Rev. Lett. 97, 036101 (2006)ADSCrossRefGoogle Scholar
  150. 150.
    N. Micali, V. Villari, M.A. Castriciano et al., J. Phys. Chem. B 110, 8289 (2006)CrossRefGoogle Scholar
  151. 151.
    J.M. Lin, T.L. Lin, U.S. Jeng et al., J. Appl. Crystallogr. 40, s540 (2007)CrossRefGoogle Scholar
  152. 152.
    J. Chevalier, O. Tillement, F. Ayela, Phys. Rev. E 80, 051403 (2009)ADSCrossRefGoogle Scholar
  153. 153.
    Q. Chen, C. Saltiel, S. Manickavasagam et al., J. Colloid Interface Sci. 280, 91 (2004)ADSCrossRefGoogle Scholar
  154. 154.
    T. Chatterjee, R. Krishnamoorti, Phys. Rev. E 75, 050403 (2007)ADSCrossRefGoogle Scholar
  155. 155.
    F. Khalkhal, P.J. Carreau, Rheol. Acta 50, 717 (2011)CrossRefGoogle Scholar
  156. 156.
    L. Leal, E. Hinch, J. Fluid Mech. 46, 685 (1971)ADSCrossRefGoogle Scholar
  157. 157.
    H.A. Scheraga, J. Chem. Phys. 23, 1526 (1955)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Energy Power and Mechanical EngineeringNorth China Electric Power UniversityBaodingChina
  2. 2.Department of Mechanical EngineeringRochester Institute of TechnologyRochesterUSA

Personalised recommendations