Advertisement

Saffman-Delbrück and beyond: A pointlike approach

  • 18 Accesses

Abstract.

We show that a very good analytical approximation of Saffman-Delbrück's (SD) law (mobility of a bio-membrane inclusion) can be obtained easily from the velocity field produced by a pointlike force in a 2D fluid embedded in a solvent, by using a small wavelength cutoff of the order of the particle's radius a . With this method, we obtain analytical generalizations of the SD law that take into account the bilayer nature of the membrane and the intermonolayer friction b . We also derive, in a calculation that consistently couples the quasi-planar two-dimensional (2D) membrane flow with the 3D solvent flow, the correction to the SD law arising when the inclusion creates a local spontaneous curvature. For an inclusion spanning a flat bilayer, the SD law is found to hold simply upon replacing the 2D viscosity \( \eta_{2}^{}\) of the membrane by the sum of the monolayer viscosities, without influence of b as long as b is above a threshold in practice well below known experimental values. For an inclusion located in only one of the two monolayers (or adhering to one monolayer), the SD law is influenced by b when b < \( \eta_{2}^{}\)/(4a2) . In this case, the mobility can be increased by up to a factor of two, as the opposite monolayer is not fully dragged by the inclusion. For an inclusion creating a local spontaneous curvature, we show that the total friction is the sum of the SD friction and that due to the pull-back created by the membrane deformation, a point that was assumed without demonstration in the literature.

Graphical abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1

    H. Lamb, Hydrodynamics (Cambridge University Press, New York, 1997)

  2. 2

    P.G. Saffman, M. Delbrück, Proc. Natl. Acad. Sci. U.S.A. 72, 3111 (1975)

  3. 3

    P.G. Saffman, J. Fluid Mech. 73, 593 (1976)

  4. 4

    B.D. Hughes, B.A. Pailthorpe, L.R. White, J. Fluid Mech. 110, 349 (1981)

  5. 5

    H.A. Stone, A. Ajdari, J. Fluid Mech. 369, 151 (1998)

  6. 6

    H.A. Stone, H. Masoud, J. Fluid Mech. 781, 494 (2015)

  7. 7

    R.R. Netz, J. Phys. I 7, 833 (1997)

  8. 8

    J.M. Park, T.C. Lubensky, J. Phys. I 7, 1217 (1996)

  9. 9

    P.G. Dommersnes, J.B. Fournier, Eur. Phys. J. B 12, 9 (1999)

  10. 10

    P.G. Dommersnes, J.B. Fournier, Biophys. J. 83, 2898 (2002)

  11. 11

    A.F. Bitbol, P.G. Dommersnes, J.B. Fournier, Phys. Rev. E 81, 050903(R) (2010)

  12. 12

    R. Cortez, SIAM J. Sci. Comput. 23, 1204 (2001)

  13. 13

    A.J. Levine, T.C. Lubensky, Phys. Rev. E 63, 041510 (2001)

  14. 14

    C. Peskin, Acta Numer. 11, 1 (2002)

  15. 15

    P.J. Atzberger, P.R. Kramer, C.S. Peskin, Acta Numer. 224, 1255 (2007)

  16. 16

    B.A. Camley, F.L.H. Brown, Phys. Rev. E 84, 021904 (2011)

  17. 17

    B.A. Camley, F.L.H. Brown, Soft Matter 9, 4767 (2013)

  18. 18

    K. Seki, S. Mogre, S. Komura, Phys. Rev. E 89, 022713 (2014)

  19. 19

    A. Naji, P.J. Atzberger, F.L.H. Brown, Phys. Rev. Lett. 102, 138102 (2009)

  20. 20

    F. Quemeneur, J.K. Sigurdsson, M. Renner, P.J. Atzberger, P. Bassereau, D. Lacoste, Proc. Natl. Acad. Sci. U.S.A. 111, 5083 (2014)

  21. 21

    R.G. Morris, M.S. Turner, Phys. Rev. Lett. 115, 198101 (2015)

  22. 22

    R. Merkel, E. Sackmann, E. Evans, J. Phys. (Paris) 50, 1535 (1989)

  23. 23

    E. Evans, A. Yeung, Chem. Phys. Lipids 73, 39 (1994)

  24. 24

    U. Seifert, S.A. Langer, Europhys. Lett. 23, 71 (1993)

  25. 25

    W. den Otter, S. Shkulipa, Biophys. J. 93, 423 (2007)

  26. 26

    J.B. Fournier, N. Khalifat, N. Puff, M.I. Angelova, Phys. Rev. Lett. 102, 018102 (2009)

  27. 27

    M. Simunovic, G.A. Voth, A. Callan-Jones, P. Bassereau, Trends Cell Biol. 25, 780 (2015)

  28. 28

    A. Naji, A.J. Levine, P. Pincus, Biophys. J. 93, L49 (2007)

  29. 29

    B.A. Camley, F.L.H. Brown, Phys. Rev. E 85, 061921 (2012)

  30. 30

    V. Demery, D. Dean, Phys. Rev. Lett. 104, 080601 (2010)

  31. 31

    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986)

  32. 32

    D.K. Lubensky, R.E. Goldstein, Phys. Fluids 8, 843 (1996)

  33. 33

    N. Oppenheimer, H. Diamant, Phys. Rev. E 82, 041912 (2010)

  34. 34

    R.J. Hill, C.Y. Wang, Proc. R. Soc. A 470, 20130843 (2014)

  35. 35

    H. Gruler, Z. Naturforsch. C 30, 608 (1975)

  36. 36

    S. Leibler, J. Phys. 47, 507 (1986)

  37. 37

    M. Goulian, R. Bruinsma, P. Pincus, EPL 22, 145 (1993)

  38. 38

    C. Prévost, H. Zhao, J. Manzi, E. Lemichez, P. Lappalainen, A. Callan-Jones, P. Bassereau, Nat. Commun. 6, 8529 (2015)

  39. 39

    C. van der Wel et al., Sci. Rep. 6, 32825 (2016)

  40. 40

    W. Helfrich, Z. Naturforsch. C 28, 693 (1973)

  41. 41

    F. Brochard, J.F. Lennon, J. Phys. (Paris) 36, 1035 (1975)

Download references

Author information

The two authors did the research and wrote the article together.

Correspondence to Jean-Baptiste Fournier.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goutaland, Q., Fournier, J. Saffman-Delbrück and beyond: A pointlike approach. Eur. Phys. J. E 42, 156 (2019) doi:10.1140/epje/i2019-11922-8

Download citation

Keywords

  • Living systems: Biological Matter