Advertisement

Magnetic, structural and cation distribution studies on \(\mathrm{FeO}\cdot\mathrm{Fe}_{(2-x)}\mathrm{Nd}_{x} \mathrm{O_{3}}\) (x = 0.00, 0.02, 0.04, 0.06 and 0.1) nanoparticles

  • 21 Accesses

Abstract.

We synthesized and characterized the colloidal suspensions of \(\mathrm{FeO}\cdot\mathrm{Fe}_{(2-x)}\mathrm{Nd}_{x} \mathrm{O_{3}}\) nanoparticles with x = 0.00, 0.02, 0.04, 0.06 and 0.1. The effect of the Fe3+ ion replacement by Nd3+ on the crystal structure is in-depth studied. The samples were characterized by the following techniques: X-ray diffraction (XRD), UV-Vis spectrophotometry, transmission electronic microscopy (TEM), small-angle X-ray scattering (SAXS), magnetization as a function of applied magnetic field (M-H loops) and magnetization as a function of temperature in zero-field-cooled and field-cooled regimes (ZFC-FC). From XRD cation distribution, structural parameters were extracted. The increasing in the bandgap is interpreted as a result of the higher interatomic separation with the doping. TEM micrographs reveal a polydisperse size and shape distribution of particles. The results for the volume-weighted average diameter measured by SAXS are consistent with those determined by XRD. From the M-H loops we found that the superparamagnetic (SPM) regime contributes with 95-97% for all samples, while only 3-5% contribution comes from the paramagnetic (PM) regime. The saturation magnetization increases in a steady manner upon increasing the Nd3+ ion molar ratio from 0.00 up to 0.06, reaching the maximum value of 105.8±0.4 Am2/kg at x = 0.06. It is worth to mention that the result for the saturation magnetization value are higher than that of the bulk material.

Graphical abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1

    D.H.K. Reddy, Y.S. Yun, Coord. Chem. Rev. 315, 90 (2016)

  2. 2

    K. Parekh et al., Mater. Chem. Phys. 222, 217 (2019)

  3. 3

    L. Shen et al., Ceram. Int. 40, 1519 (2014)

  4. 4

    I. Torres-Díaz, C. Rinaldi, Soft Matter 10, 8584 (2014)

  5. 5

    C. Scherer, A.M. Figueiredo Neto, Braz. J. Phys. 35, 718 (2005)

  6. 6

    A.G. Kolhatkar, A.C. Jamison, D. Litvinov, R.C. Willson, T.R. Lee, Int. J. Mol. Sci. 14, 15977 (2013)

  7. 7

    K. Parekh, L. Almásy, H.S. Lee, R.V. Upadhyay, Appl. Phys. A 106, 223 (2012)

  8. 8

    G.F. Goya et al., J. Appl. Phys. 94, 3520 (2003)

  9. 9

    D.H.G. Espinosa, C.L.P.O. Liveira, A.M. Figueiredo Neto, J. Opt. Soc. Am. B 35, 346 (2018)

  10. 10

    E.A. Elfimova, A.O. Ivanov, P.J. Camp, J. Chem. Phys. 136, 194502 (2012)

  11. 11

    N. Daffe et al., J. Magn. & Magn. Mater. 460, 243 (2018)

  12. 12

    E.S. Gonçalves et al., Phys. Rev. E 91, 042317 (2015)

  13. 13

    J.C. Denardin et al., Phys. Rev. B 65, 064422 (2002)

  14. 14

    R.R. Kanna et al., J. Mater. Sci.: Mater. Electron. 30, 4473 (2019)

  15. 15

    S. Aslam et al., Results Phys. 12, 1334 (2019)

  16. 16

    P.P. Naik, R.B. Tangsali, S.S. Meena, S.M. Yusuf, Mater. Chem. Phys. 191, 215 (2017)

  17. 17

    S. Amiri, H. Shokrollani, J. Magn. & Magn. Mater. 345, 18 (2013)

  18. 18

    R. Jain et al., J. Magn. & Magn. Mater. 456, 179 (2018)

  19. 19

    W. Huan et al., J. Nanosci. Nanotechnol. 14, 766 (2014)

  20. 20

    W. Tuo, H. Pan, R. Chen et al., J. Rare Earth 34, 71 (2016)

  21. 21

    H.T. Khuyen et al., J. Rare Earth 37, 1237 (2019)

  22. 22

    A.V. Teixeira et al., Phys. Rev. E 67, 021504 (2003)

  23. 23

    H. Harzali, A. Marzouki, F. Saida, A. Megriche, A. Mgaidi, J. Magn. & Magn. Mater. 460, 89 (2018)

  24. 24

    M.A. Almessiere, J. Rare Earth 37, 1108 (2019)

  25. 25

    C.T. Rueden, J. Schindelin, M.C. Hiner et al., BMC Bioinform. 18, 529 (2017)

  26. 26

    J.F.D.F. Araujo, A.C. Bruno, S.R.W. Louro, Rev. Sci. Instrum. 86, 105103 (2015)

  27. 27

    S. Arsalani et al., J. Magn. & Magn. Mater. 475, 458 (2019)

  28. 28

    G.D. Gatta, I. Kantor, T.B. Ballaran, L. Dubrovinsky, C. McCammon, Phys. Chem. Miner. 34, 627 (2007)

  29. 29

    K.V. Zipare et al., J. Rare Earths 36, 86 (2018)

  30. 30

    A.S. Elkady et al., J. Magn. & Magn. Mater. 385, 70 (2015)

  31. 31

    Georg Will, Powder Diffraction, The Rietveld Method and the Two Stage Method to Determine and Refine Crystal Structures from Powder Diffraction Data (Springer-Verlag, Berlin, Heidelberg, 2006)

  32. 32

    L. Lutterotti, Nucl. Instrum. Methods B 268, 334 (2010)

  33. 33

    M. Dalal et al., Mater. Res. Bull. 76, 389 (2016)

  34. 34

    Kumar et al., Int. Nano Lett. 3, 8 (2013)

  35. 35

    J. Kurian, M. Jacob Mathew, J. Magn. & Magn. Mater. 428, 204 (2017)

  36. 36

    D.V. Kurmude et al., J. Supercond. Nov. Magn. 27, 547 (2014)

  37. 37

    Patange et al., J. Appl. Phys. 109, 053909 (2011)

  38. 38

    C.E. Rodríguez Torres et al., Phys. Rev. B 89, 104411 (2014)

  39. 39

    E.F. Bertaut, C.R. Acad. Sci. 230, 213 (1950)

  40. 40

    B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, Mass., USA, 1978)

  41. 41

    A. Najafi Birgani et al., J. Magn. & Magn. Mater. 374, 179 (2015)

  42. 42

    H. Furuhashi, M. Inagaki, S. Naka, J. Inorg. Nucl. Chem. 35, 3009 (1973)

  43. 43

    P.J. Brown, A.G. Fox, E.N. Maslen, M.A. O’Keefe, B.T.M. Willis, International Tables for Crystallography, Vol. C (Wiley, 2006) Chapt. 6.1, pp. 554--595

  44. 44

    H. Kavas et al., J. Alloy Compd. 479, 49 (2009)

  45. 45

    R.D. Shannon, Acta Cryst. A 32, 751 (1976)

  46. 46

    B.B.V.S. Varaprasad, K.V. Ramesh, A. Srinivas, J. Supercond. Nov. Magn. 30, 3523 (2017)

  47. 47

    D. Espinosa, E.S. Gonçalves, A.M. Figueiredo Neto, J. Appl. Phys. 121, 043103 (2017)

  48. 48

    M. Dongol et al., Optik 126, 1352 (2015)

  49. 49

    D. Espinosa, L.B. Carlsson, A.M. Figueiredo Neto, S. Alves, Phys. Rev. E 88, 032302 (2013)

  50. 50

    W.F.J. Fontijn, P.J. van der Zaag, L.F. Feiner, R. Metselaar, M.A.C. Devillers, J. Appl. Phys. 85, 5100 (1999)

  51. 51

    W.F.J. Fontijn, P.J. Van der Zaag, M.A.C. Devillers, V.A.M. Brabers, R. Metselaar, Phys. Rev. B 56, 5432 (1997)

  52. 52

    P.J. van der Zaag, W.F.J. Fontijn, P. Gaspard, R.M. Wolf, V.A.M. Brabers, R.J.M. van de Veerdonk, P.A.A. van der Heijden, J. Appl. Phys. 79, 5936 (1996)

  53. 53

    J. Anghel, A. Thurber, D.A. Tenne, C.B. Hanna, A. Punnoose, J. Appl. Phys. 107, 09E314 (2010)

  54. 54

    Thurber et al., Phys. Rev. B 76, 165206 (2007)

  55. 55

    W. Luo, S.R. Nagel, T.F. Rosenbaum, R.E. Rosensweig, Phys. Rev. Lett. 67, 2721 (1991)

  56. 56

    L.A. Feigin, D.I. Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering (Plenum Press, New York, 1987)

  57. 57

    M. El-Hilo, J. Appl. Phys. 112, 103915 (2012)

  58. 58

    Tamion et al., Appl. Phys. Lett. 95, 062503 (2009)

  59. 59

    D. Caruntu, G. Caruntu, C.J. O’Connor, J. Phys. D: Appl. Phys. 40, 5801 (2007)

  60. 60

    J.P. Chen, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, E. Devlin, A. Kostikas, Phys. Rev. B 54, 9288 (1996)

  61. 61

    G. Goya, T. Berquó, F. Fonseca, J. Appl. Phys. 94, 3520 (2003)

  62. 62

    I. Sosnowska, R. Przeniosto, P. Fischer, J. Magn. & Magn. Mater. 160, 384 (1996)

  63. 63

    L. Tauxe, H. Neal Bertram, C. Seberino, Geochem. Geophys. Geosyst. 3, 1055 (2002)

  64. 64

    M. Graeser, K. Bente, T.M. Buzug, J. Phys. D: Appl. Phys. 48, 275001 (2015)

  65. 65

    R.S. Yadav et al., J. Magn. & Magn. Mater. 399, 109 (2016)

Download references

Author information

Correspondence to W. W. R. Araujo.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Araujo, W.W.R., Araujo, J.F.D.F., Oliveira, C.L.P. et al. Magnetic, structural and cation distribution studies on \(\mathrm{FeO}\cdot\mathrm{Fe}_{(2-x)}\mathrm{Nd}_{x} \mathrm{O_{3}}\) (x = 0.00, 0.02, 0.04, 0.06 and 0.1) nanoparticles. Eur. Phys. J. E 42, 153 (2019) doi:10.1140/epje/i2019-11917-5

Download citation

Keywords

  • Soft Matter: Colloids and Nanoparticles