Advertisement

Vibrational scaling of the heterogeneous dynamics detected by mutual information

  • Antonio Tripodo
  • Francesco Puosi
  • Marco Malvaldi
  • Dino LeporiniEmail author
Regular Article
  • 16 Downloads

Abstract.

The correlations detected by the mutual information in the propensities of a molecular viscous liquid are studied by molecular-dynamics simulations. Dynamic heterogeneity is evidenced and two particle fractions with different mobility and relaxation identified. The two fractions exhibit the scaling of their relaxation in terms of the rattling amplitude of the particle trapped in the cage of the first neighbours 〈u2〉 . The scaling master curve does not differ from the one found for bulk systems, thus confirming identical results previously reported in other systems with strong dynamic heterogeneity as thin molecular films. The excitation of planar and globular structures at short and long times with respect to structural relaxation, respectively, is revealed. Some of the globular structures are different from the ones evidenced in atomic mixtures. States with equal 〈u2〉 are found to have identical time dependence of several quantities, referring to both bulk and the two fractions with heterogeneous dynamics, at least up to the structural relaxation time \( \tau_{\alpha}\).

Graphical abstract

Keywords

Flowing Matter: Liquids and Complex Fluids 

References

  1. 1.
    P.G. Debenedetti, Metastable Liquids (Princeton University Press, Princeton, USA, 1997)Google Scholar
  2. 2.
    L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    M.D. Ediger, P. Harrowell, J. Chem. Phys. 137, 080901 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    C.A. Angell, K.L. Ngai, G.B. McKenna, P. McMillan, S.W. Martin, J. Appl. Phys. 88, 3113 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    R. Richert, J. Phys.: Condens. Matter 14, R703 (2002)ADSGoogle Scholar
  6. 6.
    A. Tobolsky, R.E. Powell, H. Eyring, Elastic-viscous properties of matter, in Frontiers in Chemistry, edited by R.E. Burk, O. Grummit, Vol. 1 (Interscience, New York, 1943) pp. 125--190Google Scholar
  7. 7.
    R.W. Hall, P.G. Wolynes, J. Chem. Phys. 86, 2943 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    C.A. Angell, Science 267, 1924 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    J.C. Dyre, N.B. Olsen, T. Christensen, Phys. Rev. B 53, 2171 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    L.M. Martinez, C.A. Angell, Nature 410, 663 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    K.L. Ngai, Philos. Mag. 84, 1341 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    K.L. Ngai, J. Non-Cryst. Solids 275, 7 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    X. Xia, P.G. Wolynes, Proc. Natl. Acad. Sci. U.S.A. 97, 2990 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    U. Buchenau, R. Zorn, Europhys. Lett. 18, 523 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    F. Starr, S. Sastry, J.F. Douglas, S. Glotzer, Phys. Rev. Lett. 89, 125501 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    P. Bordat, F. Affouard, M. Descamps, K.L. Ngai, Phys. Rev. Lett. 93, 105502 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    A. Widmer-Cooper, P. Harrowell, Phys. Rev. Lett. 96, 185701 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    H. Zhang, D.J. Srolovitz, J.F. Douglas, J.A. Warren, Proc. Natl. Acad. Sci. U.S.A. 106, 7735 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    A. Widmer-Cooper, H. Perry, P. Harrowell, D.R. Reichman, Nat. Phys. 4, 711 (2008)CrossRefGoogle Scholar
  20. 20.
    L. Larini, A. Ottochian, C. De Michele, D. Leporini, Nat. Phys. 4, 42 (2008)CrossRefGoogle Scholar
  21. 21.
    A. Ottochian, C. De Michele, D. Leporini, J. Chem. Phys. 131, 224517 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    F. Puosi, D. Leporini, J. Phys. Chem. B 115, 14046 (2011)CrossRefGoogle Scholar
  23. 23.
    A. Ottochian, D. Leporini, Philos. Mag. 91, 1786 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    A. Ottochian, D. Leporini, J. Non-Cryst. Solids 357, 298 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    C. De Michele, E. Del Gado, D. Leporini, Soft Matter 7, 4025 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    F. Puosi, D. Leporini, J. Chem. Phys. 136, 211101 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    F. Puosi, D. Leporini, J. Chem. Phys. 136, 164901 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    F. Puosi, D. Leporini, J. Chem. Phys. 139, 029901 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    D.S. Simmons, M.T. Cicerone, Q. Zhong, M. Tyagic, J.F. Douglas, Soft Matter 8, 11455 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    F. Puosi, C.D. Michele, D. Leporini, J. Chem. Phys. 138, 12A532 (2013)CrossRefGoogle Scholar
  31. 31.
    A. Ottochian, F. Puosi, C.D. Michele, D. Leporini, Soft Matter 9, 7890 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    V.N. Novikov, A.P. Sokolov, Phys. Rev. Lett. 110, 065701 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    F. Puosi, O. Chulkin, S. Bernini, S. Capaccioli, D. Leporini, J. Chem. Phys. 145, 234904 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    E. Guillaud, L. Joly, D. de Ligny, S. Merabia, J. Chem. Phys. 147, 014504 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    R. Horstmann, M. Vogel, J. Chem. Phys. 147, 034505 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    F. Puosi, D. Leporini, J. Chem. Phys. 148, 131102 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    M. Becchi, A. Giuntoli, D. Leporini, Soft Matter 14, 8814 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    B.A. Pazmiño Betancourt, P.Z. Hanakata, F.W. Starr, J.F. Douglas, Proc. Natl. Acad. Sci. U.S.A. 112, 2966 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    C. Angell, J. Non-Cryst. Solids 131--133, 13 (1991)ADSCrossRefGoogle Scholar
  40. 40.
    J.F. Douglas, B.A. Pazmiño Betancourt, X. Tong, H. Zhang, J. Stat. Mech.: Theory Exp. 2016, 054048 (2016)CrossRefGoogle Scholar
  41. 41.
    F. Puosi, D. Leporini, J. Chem. Phys. 136, 041104 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    A. Widmer-Cooper, P. Harrowell, H. Fynewever, Phys. Rev. Lett. 93, 135701 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    S. Bernini, D. Leporini, J. Chem. Phys. 144, 144505 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    W. Li, J. Stat. Phys. 60, 823 (1990)ADSCrossRefGoogle Scholar
  45. 45.
    A.J. Dunleavy, K. Wiesner, R. Yamamoto, C.P. Royall, Nat. Commun. 6, 6089 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    J. Iaconis, S. Inglis, A.B. Kallin, R.G. Melko, Phys. Rev. B 87, 195134 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    P.V. Sriluckshmy, I. Mandal, J. Stat. Mech.: Theory Exp. 2018, 043301 (2018)CrossRefGoogle Scholar
  48. 48.
    M.C. Gao, M. Widom, J. Phys. Chem. B 122, 3550 (2018)CrossRefGoogle Scholar
  49. 49.
    A.J. Dunleavy, K. Wiesner, C.P. Royall, Phys. Rev. E 86, 041505 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    R.L. Jack, A.J. Dunleavy, C.P. Royall, Phys. Rev. Lett. 113, 095703 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  52. 52.
  53. 53.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, 1988)Google Scholar
  54. 54.
    D. Prevosto, S. Capaccioli, M. Lucchesi, D. Leporini, P. Rolla, J. Phys.: Condens. Matter 16, 6597 (2004)ADSGoogle Scholar
  55. 55.
    A. Barbieri, G. Gorini, D. Leporini, Phys. Rev. E 69, 061509 (2004)ADSCrossRefGoogle Scholar
  56. 56.
    A. Barbieri, E. Campani, S. Capaccioli, D. Leporini, J. Chem. Phys. 120, 437 (2004)ADSCrossRefGoogle Scholar
  57. 57.
    L. Andreozzi, M. Faetti, M. Giordano, D. Leporini, J. Phys. Chem. B 103, 4097 (1999)CrossRefGoogle Scholar
  58. 58.
    L. Andreozzi, M. Faetti, M. Giordano, D. Leporini, J. Phys.: Condens. Matter 11, A131 (1999)ADSGoogle Scholar
  59. 59.
    L. Andreozzi, M. Giordano, D. Leporini, J. Non-Cryst. Solids 235, 219 (1998)ADSCrossRefGoogle Scholar
  60. 60.
    D. Leporini, Phys. Rev. A 49, 992 (1994)ADSCrossRefGoogle Scholar
  61. 61.
    M. Giordano, D. Leporini, M. Martinelli, L. Pardi, S. Santucci, C. Umeton, J. Chem. Phys. 88, 607 (1988)ADSCrossRefGoogle Scholar
  62. 62.
    L. Larini, R. Mannella, D. Leporini, J. Chem. Phys. 126, 104101 (2007)ADSCrossRefGoogle Scholar
  63. 63.
    A. Kraskov, H. Stögbauer, P. Grassberger, Phys. Rev. E 69, 066138 (2004)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    M. Kröger, Phys. Rep. 390, 453 (2004)ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    A. Malins, S.R. Williams, J. Eggers, C.P. Royall, J. Chem. Phys. 139, 234506 (2013)ADSCrossRefGoogle Scholar
  66. 66.
    J. Taffs, A. Malins, S.R. Williams, C.P. Royall, J. Phys.: Condens. Matter 22, 104119 (2010)ADSGoogle Scholar
  67. 67.
    C.P. Royall, S.R. Williams, T. Ohtsuka, H. Tanaka, Nat. Mater. 7, 556 (2008)ADSCrossRefGoogle Scholar
  68. 68.
    C.P. Royall, S.R. Williams, J. Phys. Chem. B 115, 7288 (2011)CrossRefGoogle Scholar
  69. 69.
    J.P.K. Doye, D.J. Wales, R.S. Berry, J. Chem. Phys. 103, 4234 (1995)ADSCrossRefGoogle Scholar
  70. 70.
    C.P. Royall, A. Malins, A.J. Dunleavy, R. Pinney, J. Non-Cryst. Solids 407, 34 (2015)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Antonio Tripodo
    • 1
  • Francesco Puosi
    • 1
  • Marco Malvaldi
    • 1
  • Dino Leporini
    • 1
    • 2
    Email author
  1. 1.Dipartimento di Fisica “Enrico Fermi”Università di PisaPisaItaly
  2. 2.IPCF-CNR, UOSPisaItaly

Personalised recommendations