Distinguishing noisy crystalline structures using bond orientational order parameters
- 11 Downloads
Abstract.
The bond orientational order parameters originally introduced by Steinhardt et al. (Phys. Rev. B 28, 784 (1983)) are a common tool for local structure characterization in soft matter studies. Recently, Mickel et al. (J. Chem. Phys. 138, 044501 (2013)) highlighted problems of the bond orientational order parameters due to the ambiguity of the underlying neighbourhood definition. Here we show the difficulties to distinguish common structures like FCC- and BCC-based structures with the suggested neighbourhood definitions when noise is introduced. We propose a simple improvement to the neighbourhood definition that results in robust and continuous bond orientational order parameters with which we can accurately distinguish crystal structures even when noise is present.
Graphical abstract
Keywords
Soft Matter: Self-organisation and Supramolecular AssembliesReferences
- 1.E. Allahyarov, K. Sandomirski, S.U. Egelhaaf, H. Löwen, Nat. Commun. 6, 7110 (2015)ADSCrossRefGoogle Scholar
- 2.U. Gasser, E.R. Weeks, A. Schofield, P.N. Pusey, D.A. Weitz, Science 292, 258 (2001)ADSCrossRefGoogle Scholar
- 3.J.H. Chu, I. Lin, Phys. Rev. Lett. 72, 4009 (1994)ADSCrossRefGoogle Scholar
- 4.O. Arp, D. Block, A. Piel, A. Melzer, Phys. Rev. Lett. 93, 165004 (2004)ADSCrossRefGoogle Scholar
- 5.A.P. Nefedov et al., New J. Phys. 5, 33 (2003)ADSCrossRefGoogle Scholar
- 6.A. Panaitescu, A. Kudrolli, Phys. Rev. E 90, 032203 (2014)ADSCrossRefGoogle Scholar
- 7.T. Aste, M. Saadatfar, A. Sakellariou, T.J. Senden, Physica A: Stat. Mech. Appl. 339, 16 (2004)ADSCrossRefGoogle Scholar
- 8.P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. B 28, 784 (1983)ADSCrossRefGoogle Scholar
- 9.W. Lechner, C. Dellago, J. Chem. Phys. 129, 114707 (2008)ADSCrossRefGoogle Scholar
- 10.W. Mickel, S.C. Kapfer, G.E. Schröder-Turk, K. Mecke, J. Chem. Phys. 138, 044501 (2013)ADSCrossRefGoogle Scholar
- 11.G.E. Schröder-Turk, R. Schielein, S.C. Kapfer, F.M. Schaller, G.W. Delaney, T. Senden, M. Saadatfar, T. Aste, K. Mecke, AIP Conf. Proc. 1542, 349 (2013)ADSCrossRefGoogle Scholar
- 12.P.N. Pusey, J. Phys. (Paris) 48, 709 (1987)CrossRefGoogle Scholar
- 13.P.R. ten Wolde, M.J. Ruiz-Montero, D. Frenkel, Phys. Rev. Lett. 75, 2714 (1995)ADSCrossRefGoogle Scholar
- 14.P. Rein ten Wolde, M.J. Ruiz-Montero, D. Frenkel, J. Chem. Phys. 104, 9932 (1996)ADSCrossRefGoogle Scholar
- 15.I. Volkov, M. Cieplak, J. Koplik, J.R. Banavar, Phys. Rev. E 66, 061401 (2002)ADSCrossRefGoogle Scholar
- 16.C. Desgranges, J. Delhommelle, Phys. Rev. B 77, 054201 (2008)ADSCrossRefGoogle Scholar
- 17.F. Rietz, C. Radin, H.L. Swinney, M. Schröter, Phys. Rev. Lett. 120, 055701 (2018)ADSCrossRefGoogle Scholar
- 18.F.A. Lindemann, Phys. Z. 11, 609 (1910)Google Scholar
- 19.R.W. Cahn, Nature 413, 582 (2001)ADSCrossRefGoogle Scholar
- 20.C. Rycroft, Voro++: a three-dimensional Voronoi cell library in C++, Technical Report LBNL-1432E, Lawrence Berkeley National Lab. (LBNL), Berkeley, CA, U.S.A., January 2009Google Scholar
- 21.S. Fortune, Voronoi diagrams and Delaunay triangulations, in Computing in Euclidean Geometry, Lecture Notes Series on Computing, Vol. 4 (World Scientific Publishing Co. Pte. Ltd, 1995) pp. 225--265Google Scholar
- 22.J.P. Troadec, A. Gervois, L. Oger, Europhys. Lett. 42, 167 (1998)ADSCrossRefGoogle Scholar