Advertisement

Wrinkling number and force of a particle raft in compression

  • Pingcheng Zuo
  • Jiaxin Ji
  • Rafael Tadmor
  • Jianlin LiuEmail author
Regular Article
  • 31 Downloads

Abstract.

A particle raft is formed by a layer of small particles floating on a water surface, which has a higher load bearing capacity than pure water. In the present work, we have made a comprehensive study on the wrinkling number and force of the particle raft in planar compression. The wrinkling number during the whole loading process is measured, accompanied with snapshots on the morphologies of the particle raft. The force-displacement curve is given based on the loading system, which has been validated by the numerical simulation. Moreover, the experiment and theoretical results both show that the equivalent Young’s modulus is dependent upon the loading displacement. Finally, the maximum wrinkling number of the raft has been analyzed by the scaling law, which agrees well with the experimental result. These findings have deepen our understandings on the mechanical properties of soft materials, which also hold implications on drug delivery, chemical engineering, micro-fluidics, environment protection, petroleum exploitation, mineral flotation, etc.

Graphical abstract

Keywords

Flowing Matter: Interfacial phenomena 

References

  1. 1.
    P. Aussillous, D. Quere, Nature 411, 924 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    F. Sarvi, K. Jain, T. Arbatan et al., Adv. Healthc. Mater. 4, 77 (2015)CrossRefGoogle Scholar
  3. 3.
    T. Arbatan, L. Li, J. Tian, W. Shen, Adv. Healthc. Mater. 1, 80 (2012)CrossRefGoogle Scholar
  4. 4.
    S. Fujii, M. Suzaki, S.P. Armes et al., Langmuir 27, 8067 (2011)CrossRefGoogle Scholar
  5. 5.
    J. Tian, T. Arbatan, X. Li et al., Chem. Commun. 46, 4734 (2010)CrossRefGoogle Scholar
  6. 6.
    H. Zeng, Y. Zhao, Appl. Phys. Lett. 96, 114104 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Z. Dai, D. Fornasiero, J. Ralston, J. Colloid Interface Sci. 217, 70 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    R. Crawford, J. Ralston, Int. J. Miner. Process. 23, 1 (1988)CrossRefGoogle Scholar
  9. 9.
    E. Bormashenko, G. Whyman, O. Gendelman, Adv. Condens. Matter Phys. 6891, 206578 (2015)Google Scholar
  10. 10.
    G. Whyman, E. Bormashenko, J. Colloid Interface Sci. 457, 148 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    N. Pike, D. Richard, W. Foster et al., Proc. R. Soc. London Ser. B 269, 1211 (2002)CrossRefGoogle Scholar
  12. 12.
    E. Bormashenko, Curr. Opin. Colloid Inerface Sci. 16, 266 (2011)CrossRefGoogle Scholar
  13. 13.
    G. McHale, M.I. Newton, Soft Matter 7, 5473 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    G. McHale, M.I. Newton, Soft Matter 11, 2530 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    P. Aussillous, D. Quere, Proc. R. Soc. London Ser. A 462, 973 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Zhao, J. Fang, H. Wang et al., Adv. Mater. 22, 707 (2010)CrossRefGoogle Scholar
  17. 17.
    E. Bormashenko, R. Pogreb, R. Balter et al., Colloid Polym. Sci. 293, 2157 (2015)CrossRefGoogle Scholar
  18. 18.
    J. Jin, C. Ooi, D. Dao et al., Soft Matter 14, 4160 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    C. Planchette, A.L. Biance, O. Pitois et al., Phys. Fluids 25, 042104 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    C. Planchette, A.L. Biance, E. Lorenceau, EPL 97, 14003 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    D. Zang, Z. Chen, Y. Zhang et al., Soft Matter 9, 5067 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Z. Chen, D. Zang, L. Zhao et al., Langmuir 33, 6232 (2017)CrossRefGoogle Scholar
  23. 23.
    S. Asare-Asher, J.N. Connor, R. Sedev, J. Colloid Interface Sci. 449, 341 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Z. Liu, X. Fu, B.P. Binks et al., Langmuir 31, 11236 (2015)CrossRefGoogle Scholar
  25. 25.
    A. Rendos, N. Alsharif, B.L. Kim et al., Soft Matter 13, 8903 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    M. Dandan, H.Y. Erbil, Langmuir 25, 8362 (2009)CrossRefGoogle Scholar
  27. 27.
    J. Liu, P. Zuo, Eur. Phys. J. E 39, 17 (2016)CrossRefGoogle Scholar
  28. 28.
    X. Li, H. Shi, Y. Wang et al., Adv. Mater. Interfaces 5, 1701139 (2018)CrossRefGoogle Scholar
  29. 29.
    X. Li, Y. Wang, J. Huang et al., Appl. Phys. Lett. 111, 261604 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    X. Li, Y. Xue, P. Lv et al., Soft Matter 12, 1655 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    N.J. Mlot, C.A. Tovey, D.L. Hu, Proc. Natl. Acad. Sci. U.S.A. 108, 7669 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    P. Zuo, J. Liu, S. Li, Soft Matter 13, 2315 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    P. Petit, A.L. Biance, E. Lorenceau et al., Phys. Rev. E 93, 042802 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    C. Planchette, E. Lorenceau, A.L. Biance, Soft Matter 8, 2444 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    T.D. Kassuga, J.P. Rothstein, J. Colloid Interface Sci. 448, 287 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    D. Vella, P. Aussillous, L. Mahadevan, EPL 68, 212 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    R. Tadmor, R. Das, S. Gulec et al., Langmuir 33, 3594 (2017)CrossRefGoogle Scholar
  38. 38.
    P. Cicuta, D. Vella, Phys. Rev. Lett. 102, 138302 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    M. Pepicelli, T. Verwijlen, T.A. Tervoort et al., Soft Matter 35, 13 (2017)Google Scholar
  40. 40.
    B.H. Sun, Sci. China Phys. Mech. 61, 024721 (2017)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Pingcheng Zuo
    • 1
  • Jiaxin Ji
    • 2
  • Rafael Tadmor
    • 3
  • Jianlin Liu
    • 1
    Email author
  1. 1.Department of Engineering Mechanics, College of Pipeline and Civil EngineeringChina University of Petroleum (East China)QingdaoChina
  2. 2.College of Mechanical and Electronic EngineeringChina University of Petroleum (East China)QingdaoChina
  3. 3.Department of Mechanical EngineeringBen Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations