Advertisement

A novel molecular dynamics study of CO2 permeation through aquaporin-5

  • Marzieh Alishahi
  • Reza KamaliEmail author
Regular Article

Abstract.

Aquaporins (AQPs) are protein channels which facilitate rapid water permeation across cell membrane. The AQPs are very vital for biological organs, as their malfunction causes severe diseases in human body. A particular family of AQPs, that is AQP5, has a significant role in lung fluid transport due to submucosal glands structure. However, it has not been yet well understood whether these protein channels can conduct gas molecules. Here, Molecular Dynamics (MD) simulations are used to investigate the CO2 permeability and diffusion in AQP5 during a 40-nanosecond period. For the first time, equilibrium and Steered MD (SMD) are used to simulate self and force-induced diffusion of CO2 molecules across AQP5 and POPE lipid bilayer. According to PMFs profile associated to CO2 permeation, the hydrophobic central pore provides a more suitable pathway for gas molecules compared to other AQP5 channels. Although CO2 molecules can also permeate across AQP5 water channels, the rate of CO2 permeation through four channels of the AQP5 monomers is much lower than the central pore. The rate of CO2 permeation through four AQP5 water channels is even lower than CO2 diffusion through POPE lipid membrane. The results reported in this investigation demonstrate that MD simulations of human AQP5 provide valuable insights into the gas permeation mechanism for both the equilibrium self-diffusion, and quasi-equilibrium condition.

Graphical abstract

Keywords

Flowing Matter: Interfacial phenomena 

References

  1. 1.
    X. Geng, B. Yang, Transport Characteristics of Aquaporins (Springer, The Netherlands, 2017)Google Scholar
  2. 2.
    G.M. Cooper, E.H. Robert, The Cell: A Molecular Approach (Boston University, Sunderland, 2000)Google Scholar
  3. 3.
    J.S. Hub, H. Grubmüller, B.L. Groot, Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations?, in Aquaporins, edited by E. Beitz, Handbook of Experimental Pharmacology, Vol. 190 (Springer, 2009) pp. 57--76Google Scholar
  4. 4.
    L.S. King, D. Kozono, P. Agre, Nat. Rev. Mol. Cell Biol. 5, 687 (2004)CrossRefGoogle Scholar
  5. 5.
    A.S. Verkman, A.K. Mitra, Am. J. Physiol.-Renal Physiol. 278, F13 (2000)CrossRefGoogle Scholar
  6. 6.
    N.L. Nakhoul, B.A. Davis, M.F. Romero, W.F. Boron, Am. J. Physiol.-Cell Physiol. 274, C543 (1998)CrossRefGoogle Scholar
  7. 7.
    A.S. Verkman, Respir. Physiol. Neurobiol. 159, 324 (2007)CrossRefGoogle Scholar
  8. 8.
    S.A. Comhair, W. Xu, L. Mavrakis, M.A. Aldred, K. Asosingh, S.C. Erzurum, Am. J. Respir. Cell Mol. Biol. 49, 723 (2012)CrossRefGoogle Scholar
  9. 9.
    R. Musa-Aziz, L.-M. Chen, M.F. Pelletier, W.F. Boron, Proc. Natl. Acad. Sci. U.S.A. 106, 5406 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    B. Yang, N. Fukuda, A. van Hoek, M.A. Matthay, T. Ma, A.S. Verkman, J. Biol. Chem. 275, 2686 (2000)CrossRefGoogle Scholar
  11. 11.
    N. Uehlein, C. Lovisolo, F. Siefritz, R. Kaldenhoff, Nature 425, 734 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    A. Missner, P. Kügler, S.M. Saparov, K. Sommer, J.C. Matthai, M.L. Zeidel, P. Pohl, J. Biol. Chem. 283, 25340 (2008)CrossRefGoogle Scholar
  13. 13.
    M. Alishahi, R. Kamali, O. Abouali, Russ. J. Electrochem. 51, 49 (2015)CrossRefGoogle Scholar
  14. 14.
    M. Alishahi, R. Kamali, O. Abouali, Eur. Phys. J. E 38, 92 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    C. Maffeo, S. Bhattacharya, J. Yoo, D. Wells, A. Aksimentiev, Chem. Rev. 112, 6250 (2012)CrossRefGoogle Scholar
  16. 16.
    A.R. Binesh, R. Kamali, Biophys. Chem. 207, 107 (2015)CrossRefGoogle Scholar
  17. 17.
    L. Janosi, M. Ceccarelli, PLoS ONE 8, e59897 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    M. Alishahi, R. Kamali, Biophys. Physicobiol. 15, 255 (2018)CrossRefGoogle Scholar
  19. 19.
    V. Endeward, R. Musa-Aziz, G.J. Cooper, L.-M. Chen, M.F. Pelletier, L.V. Virkki, C.T. Supuran, L.S. King, W.F. Boron, G. Gros, FASEB J. 20, 1974 (2006)CrossRefGoogle Scholar
  20. 20.
    M. Herrera, J.L. Garvin, Pflüg. Arch.-Eur. J. Physiol. 462, 623 (2011)CrossRefGoogle Scholar
  21. 21.
    N. Uehlein, B. Otto, A. Eilingsfeld, F. Itel, W. Meier, R. Kaldenhoff, Sci. Rep. 2, 538 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    R. Kaldenhoff, L. Kai, N. Uehlein, Biochim. Biophys. Acta 1840, 1592 (2014)CrossRefGoogle Scholar
  23. 23.
    Y. Wang, J. Cohen, W.F. Boron, K. Schulten, E. Tajkhorshid, J. Struct. Biol. 157, 534 (2007)CrossRefGoogle Scholar
  24. 24.
    F. Itel, S. Al-Samir, F. Öberg, M. Chami, M. Kumar, C.T. Supuran, P.M. Deen, W. Meier, K. Hedfalk, G. Gros, V. Endeward, FASEB J. 26, 5182 (2012)CrossRefGoogle Scholar
  25. 25.
    M. Arias-Hidalgo, S. Al-Samir, G. Gros, V. Endeward, Am. J. Physiol.-Cell Physiol. 315, C137 (2018)CrossRefGoogle Scholar
  26. 26.
    S. Park, F. Khalili-Araghi, E. Tajkhorshid, K. Schulten, J. Chem. Phys. 119, 3559 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    R. Horsefield, K. Norden, M. Fellert, A. Backmark, S. Törnroth-Horsefield, A.C.T. van Scheltinga, J. Kvassman, P. Kjellbom, U. Johanson, R. Neutze, Proc. Natl. Acad. Sci. U.S.A. 105, 13327 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)CrossRefGoogle Scholar
  29. 29.
    L. Martínez, R. Andrade, E.G. Birgin, J.M. Martínez, J. Comput. Chem. 30, 2157 (2009)CrossRefGoogle Scholar
  30. 30.
    J. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 26, 1781 (2005)CrossRefGoogle Scholar
  31. 31.
    J. Huang, A.D. MacKerell, J. Comput. Chem. 34, 2135 (2013)CrossRefGoogle Scholar
  32. 32.
    F. Zhu, E. Tajkhorshid, K. Schulten, Biophys. J. 83, 154 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    O.S. Smart, J.G. Neduvelil, X. Wang, B.A. Wallace, M.S. Sansom, J. Mol. Graph. 14, 354 (1996)CrossRefGoogle Scholar
  34. 34.
    M.O. Jensen, S. Park, E. Tajkhorshid, K. Schulten, Proc. Natl. Acad. Sci. U.S.A. 99, 6731 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    Marvin, A full featured chemical editor for making science accessible on all platforms, ChemAxon, 2019, available at https://chemaxon.com/products/marvin

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringShiraz UniversityShirazIran

Personalised recommendations