Advertisement

Defect dynamics in clusters of self-propelled rods in circular confinement

  • Zhengjia Wang
  • Tieyan Si
  • Junhua HaoEmail author
  • Yu Guan
  • Feng Qin
  • Bin Yang
  • Wenwu Cao
Regular Article
  • 69 Downloads

Abstract.

Rod-shaped active micro/nano-particles, such as bacterial and bipolar metallic micro/nano-motors, demonstrate novel collective phenomena far from the equilibrium state compared to passive particles. We apply a simulation approach --dissipative particle dynamics (DPD)-- to explore the collectively ordered states of self-propelled rods (SPRs). The SPRs are confined in a finite circular zone and repel each other when two rods touch each other. It is found that for a long enough rods system, the global vortex patterns, dynamic pattern oscillation between hedgehog pattern and vortex pattern, and hedgehog patterns are observed successively with increasing active force Fa. For the vortex pattern, the total interaction energy between the rods U is linear with active force Fa, i.e., UFa . While the relation UFa2 is obtained for the hedgehog structure. It is observed that a new hedgehog pattern with one defect core is created by two ejections of polar cluster in opposite directions from the original hedgehog pattern, and then merges into one through the diffusion of the two aggregates, i.e., the creation and annihilation of topological charges.

Graphical abstract

Keywords

Soft Matter: Colloids and Nanoparticles 

References

  1. 1.
    E.M. Purcell, Am. J. Phys. 45, 3 (1977)ADSCrossRefGoogle Scholar
  2. 2.
    T. Qiu et al., Nat. Commun. 5, 5119 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    C. Brennen, H. Winet, Annu. Rev. Fluid Mech. 9, 339 (1977)ADSCrossRefGoogle Scholar
  4. 4.
    H.A. Stone, A.D.T. Samuel, Phys. Rev. Lett. 77, 4102 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    D.L. Koch, G. Subramanian, Annu. Rev. Fluid Mech. 43, 637 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    W.F. Paxton et al., J. Am. Chem. Soc. 128, 14881 (2006)CrossRefGoogle Scholar
  7. 7.
    J. Zhang, B.A. Grzybowski, S. Granick, Langmuir 33, 6964 (2017)CrossRefGoogle Scholar
  8. 8.
    Y. Yoshizumi, H. Suzuki, ACS Appl. Mater. Interfaces 9, 21355 (2017)CrossRefGoogle Scholar
  9. 9.
    A.I. Campbell, S.J. Ebbens, Langmuir 29, 14066 (2013)CrossRefGoogle Scholar
  10. 10.
    W. Ebeling, Physica A 314, 92 (2002)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    S. Ramachandran, P.B.S. Kumar, I. Pagonabarraga, Eur. Phys. J. E 20, 151 (2006)CrossRefGoogle Scholar
  12. 12.
    B. Ezhilan, M.J. Shelley, D. Saintillan, Phys. Fluids 25, 070607 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    C.E. Walczak, T.J. Mitchison, A. Desai, Cell 84, 37 (1996)CrossRefGoogle Scholar
  14. 14.
    P.S. Maddox, K.S. Bloom, E.D. Salmon, Nat. Cell Biol. 2, 36 (2000)CrossRefGoogle Scholar
  15. 15.
    M.J. Shelley, Annu. Rev. Fluid Mech. 48, 487 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    T. Vicsek, A. Zafeiris, Phys. Rep. 517, 71 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    M.C. Marchetti et al., Rev. Mod. Phys. 85, 1143 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    M. Romensky, V. Lobaskin, T. Ihle, Phys. Rev. E 90, 063315 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    A. Bricard et al., Nature 503, 95 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    E. Ben-Naim, P.L. Krapivsky, Phys. Rev. E 73, 031109 (2006)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    I.S. Aranson, L.S. Tsimring, Phys. Rev. E 74, 031915 (2006)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    D. Grossman, I.S. Aranson, E. Ben Jacob, New J. Phys. 10, 023036 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    J. Deseigne, O. Dauchot, H. Chate, Phys. Rev. Lett. 105, 098001 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    C.A. Weber et al., Phys. Rev. Lett. 110, 208001 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    A. Sokolov et al., Phys. Rev. Lett. 98, 158102 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    A. Baskaran, M.C. Marchetti, Proc. Natl. Acad. Sci. U.S.A. 106, 15567 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    F. Peruani, A. Deutsch, M. Bar, Phys. Rev. E 74, 030904 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    Y.Z. Yang, V. Marceau, G. Gompper, Phys. Rev. E 82, 031904 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    A. Baskaran, M.C. Marchetti, Phys. Rev. Lett. 101, 268101 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    F. Peruani et al., Phys. Rev. Lett. 108, 098102 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    H.H. Wensink et al., Proc. Natl. Acad. Sci. U.S.A. 109, 14308 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    H.P. Zhang et al., Proc. Natl. Acad. Sci. U.S.A. 107, 13626 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    J. Dunkel et al., Phys. Rev. Lett. 110, 228102 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    A. Kudrolli et al., Phys. Rev. Lett. 100, 058001 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    W.F. Paxton et al., J. Am. Chem. Soc. 126, 13424 (2004)CrossRefGoogle Scholar
  36. 36.
    N. Mano, A. Heller, J. Am. Chem. Soc. 127, 11574 (2005)CrossRefGoogle Scholar
  37. 37.
    Y. Sumino et al., Nature 483, 448 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    V. Schaller et al., Nature 467, 73 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    A. Zottl, H. Stark, J. Phys.: Condens. Matter 28, 253001 (2016)ADSGoogle Scholar
  40. 40.
    Z.J. Wang et al., Soft Matter 14, 2906 (2018)ADSCrossRefGoogle Scholar
  41. 41.
    G.L. Li, J.X. Tang, Phys. Rev. Lett. 103, 078101 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    C. Abaurrea Velasco et al., Soft Matter 13, 5865 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    A. Deblais et al., Phys. Rev. Lett. 120, 188002 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    F.G. Woodhouse, R.E. Goldstein, Phys. Rev. Lett. 109, 168105 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    A. Bricard et al., Nat. Commun. 6, 7470 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    H. Wioland et al., Phys. Rev. Lett. 110, 268102 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    K. Beppu et al., Soft Matter 13, 5038 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    E. Lushi, H. Wioland, R.E. Goldstein, Proc. Natl. Acad. Sci. U.S.A. 111, 9733 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    A.C.H. Tsang, E. Kanso, Phys. Rev. E 91, 043008 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    M. Theillard, R. Alonso-Matilla, D. Saintillan, Soft Matter 13, 363 (2017)ADSCrossRefGoogle Scholar
  51. 51.
    J. Slomka, A. Townsend, J. Dunkel, Phys. Rev. Fluids 3, 103304 (2018)ADSCrossRefGoogle Scholar
  52. 52.
    M. Ravnik, J.M. Yeomans, Phys. Rev. Lett. 110, 026001 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    P.J. Hoogerbrugge, J.M.V.A. Koelman, Europhys. Lett. 19, 155 (1992)ADSCrossRefGoogle Scholar
  54. 54.
    R.D. Groot, P.B. Warren, J. Chem. Phys. 107, 4423 (1997)ADSCrossRefGoogle Scholar
  55. 55.
    P. Espanol, P. Warren, Europhys. Lett. 30, 191 (1995)ADSCrossRefGoogle Scholar
  56. 56.
    F. Lugli, E. Brini, F. Zerbetto, J. Phys. Chem. C 116, 592 (2012)CrossRefGoogle Scholar
  57. 57.
    J.L. Cheng, A. Vishnyakov, A.V. Neimark, J. Chem. Phys. 142, 034705 (2015)ADSCrossRefGoogle Scholar
  58. 58.
    R.D. Groot, K.L. Rabone, Biophys. J. 81, 725 (2001)ADSCrossRefGoogle Scholar
  59. 59.
    I. Vattulainen et al., J. Chem. Phys. 116, 3967 (2002)ADSCrossRefGoogle Scholar
  60. 60.
    S. Xiao et al., Soft Matter 11, 2416 (2015)ADSCrossRefGoogle Scholar
  61. 61.
    Y.K. Levine et al., J. Chem. Phys. 122, 144902 (2005)ADSCrossRefGoogle Scholar
  62. 62.
    A. AlSunaidi, W.K. den Otter, J.H.R. Clarke, J. Chem. Phys. 130, 124910 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    S.H. Chou et al., Soft Matter 7, 9119 (2011)ADSCrossRefGoogle Scholar
  64. 64.
    H.H. Wensink, H. Lowen, Phys. Rev. E 78, 031409 (2008)ADSCrossRefGoogle Scholar
  65. 65.
    G.S. Redner, M.F. Hagan, A. Baskaran, Phys. Rev. Lett. 110, 055701 (2013)ADSCrossRefGoogle Scholar
  66. 66.
    S. Weitz, A. Deutsch, F. Peruani, Phys. Rev. E 92, 012322 (2015)ADSCrossRefGoogle Scholar
  67. 67.
    X.Q. Shi, Y.Q. Ma, Nat. Commun. 4, 3013 (2013)ADSCrossRefGoogle Scholar
  68. 68.
    T.Y. Si, Physica A 391, 3054 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhengjia Wang
    • 1
  • Tieyan Si
    • 2
  • Junhua Hao
    • 3
    Email author
  • Yu Guan
    • 4
  • Feng Qin
    • 1
  • Bin Yang
    • 1
  • Wenwu Cao
    • 1
  1. 1.Condensed Matter Science and Technology Institute, School of Instrumentation Science and EngineeringHarbin Institute of TechnologyHarbinP.R. China
  2. 2.School of PhysicsHarbin Institute of TechnologyHarbinP.R. China
  3. 3.Department of PhysicsTianjin University Renai CollegeTianjinP.R. China
  4. 4.Amur State UniversityBlagoveshchenskRussia

Personalised recommendations