Investigations into the law of sand particle accumulation over railway subgrade with wind-break wall

  • Ning HuangEmail author
  • Kang Gong
  • Bin Xu
  • Jian Zhao
  • Hongchao Dun
  • Wei He
  • Guowei Xin
Regular Article


Windbreak wall over railway subgrades is an effective and widely used measure to reduce the impact of high-speed wind in northwest China and central Asia. For the railway crossing sandy/Gobi desert, there exists serious sand accumulation over subgrade behind windbreak walls, causing great harm to the normal railway operation. So far, many measures have been tried to prevent sand accumulation. However, due to lack of understanding on causes of sand accumulation, they are often ineffective. To explore the characteristics of wind-blown sand flow around railway subgrades and the causes of sand accumulation, we set up a turbulent flow-sand particle-terrain coupling model and calculated sand particles’ motion features around a typical windbreak wall in Lanxin railway line using the Lagrangian particle-tracing model. The results show that in sandy desert, although inflow sand particles are difficult to fly over windbreak wall, due to presence of a large reflux zone behind the windbreak wall where “reverse” wind-blown sand flow is generated, sand particles are blown up and rolled back to the subgrade under the effect of vertical wind velocity and reflux. By contrast, in the Gobi desert, sand particles are much easier to fly over windbreak wall and possess different motion features under different wind speeds. To solve the problem of sand accumulation on railway subgrade, we should comprehensively consider both wind speed and underlying conditions and then take appropriate measures.

Graphical abstract


Flowing Matter: Liquids and Complex Fluids 


  1. 1.
    Z. Wu, Fifty Year History of China Desert Science (Science Press, Beijing, 2003)Google Scholar
  2. 2.
    F. Xu, J. Desert Res. 14, 69 (1994)Google Scholar
  3. 3.
    G.J. Gao, H.Q. Tian, Int. J. Crashworthiness 12, 21 (2007)CrossRefGoogle Scholar
  4. 4.
    G.J. Gao, H.Q. Tian, Speed regulation of passenger car based on side wind speed and direction, in International Conference on Transportation Engineering, 2007 (ASCE, 2007) pp. 455--460Google Scholar
  5. 5.
    T. Wang, J. Desert Res. 25, 145 (2005)ADSGoogle Scholar
  6. 6.
    Z.B. Dong, J. Desert Res. 25, 293 (2005)Google Scholar
  7. 7.
    X.W. Liu, Z.G. Cui, J. Desert Res. 14, 38 (1994)ADSGoogle Scholar
  8. 8.
    D. Zhou, X.X. Yuan, M.Z. Yang, J. Exp. Fluid Mech. 26, 63 (2012)Google Scholar
  9. 9.
    X.J. Zheng, G.S. Ma, N. Huang, J. Desert Res. 31, 21 (2007)Google Scholar
  10. 10.
    China Central Television-Focus Interview, Master and Apprentice (I): Dancing with the wind, (accessed 2 May 2016)
  11. 11.
    F.Q. Jiang, Y. Li, K.C. Li, J.J. Cheng, C.X. Xue, S.C. Ge, J. China Railw. Soc. 32, 105 (2010)Google Scholar
  12. 12.
    C.X. Xue, F.Q. Jiang, J.J. Cheng, J. Glaciol. Geocryol. 33, 41462 (2011)Google Scholar
  13. 13.
    J.J. Cheng, J.Q. Lei, S.Y. Li, H.F. Wang, Aeolian Res. 21, 139 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    X.J. Li, X.N. Ma, High Speed Railw. Technol. 8, 38 (2017)Google Scholar
  15. 15.
    X.J. Zheng, Mechanics of Wind-blown Sand Movements (Springer, Berlin, Heidelberg, 2009)CrossRefGoogle Scholar
  16. 16.
    R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops, and Particles (Academic Press, NewYork, 1978)Google Scholar
  17. 17.
    D.M. Hargreaves, N.G. Wright, J. Wind Eng. Ind. Aerodyn. 95, 355 (2007)CrossRefGoogle Scholar
  18. 18.
    B.E. Launder, D.B. Spalding, Lectures in Mathematical Models of Turbulence (Academic Press, London, 1972). Google Scholar
  19. 19.
    H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method (World Publishing Corporation, Beijing, 2010)Google Scholar
  20. 20.
    R.S. Anderson, P.K. Haff, Science 241, 820 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    J.D. Wilson, J. Appl. Meteorol. 39, 1894 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    R.S. Anderson, Proc. R. Soc. Edinb. 96, 149 (1989)Google Scholar
  23. 23.
    J.F. Kok, N.O. Renno, J. Geophys. Res. Atmos. 114, 17204 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    S. Dupont, G. Bergametti, B. Marticorena, S. Simoëns, J. Geophys. Res. Atmos. 118, 7109 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Y.F. He, H.S. Zhang, L. Kang, Acta Sci. Natur. Univ. Pekin. 45, 439 (2009)Google Scholar
  26. 26.
    S.J. Blott, K. Pye, Sedimentology 53, 671 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    D. Tong, Wind tunnel experiments and numerical simulation of aeolian saltation on micro-topography (Lanzhou University, 2012)Google Scholar
  28. 28.
    N. Huang, X.J. Zheng, Y.H. Zhou, Adv. Eng. Softw. 37, 32 (2006)CrossRefGoogle Scholar
  29. 29.
    R.A. Bagnold, Nature 18, 167 (1941)Google Scholar
  30. 30.
    A.D. Araújo, E.J.R. Parteli, T. Poeschel, J.S. Andrade, H.J. Herrmann, Sci. Rep. 3, 2858 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    I.A. Lima, A.D. Araújo, E.J.R. Parteli, J.S. Andrade, H.J. Herrmann, Sci. Rep. 7, 45148 (2017)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ning Huang
    • 1
    • 2
    Email author
  • Kang Gong
    • 1
    • 2
  • Bin Xu
    • 1
    • 2
  • Jian Zhao
    • 3
  • Hongchao Dun
    • 1
    • 2
  • Wei He
    • 1
    • 2
  • Guowei Xin
    • 1
    • 2
  1. 1.Key Laboratory of Mechanics on Disaster and Environment in Western ChinaLanzhou University, the Ministry of Education of ChinaLanzhouChina
  2. 2.Department of Mechanics, School of Civil Engineering and MechanicsLanzhou UniversityLanzhouChina
  3. 3.Northwest Institute of Nuclear TechnologyXi’anChina

Personalised recommendations