Elucidating the impact of extreme nanoscale confinement on segmental and chain dynamics of unentangled poly(cis-1,4-isoprene)

  • Thomas Kinsey
  • Emmanuel Mapesa
  • Tyler Cosby
  • Youjun He
  • Kunlun Hong
  • Yangyang Wang
  • Ciprian Iacob
  • Joshua SangoroEmail author
Regular Article
Part of the following topical collections:
  1. Dielectric Spectroscopy Applied to Soft Matter


Broadband dielectric spectroscopy is employed to probe dynamics in low molecular weight poly(cis-1,4-isoprene) (PI) confined in unidirectional silica nanopores with mean pore diameter, D, of 6.5 nm. Three molecular weights of PI (3, 7 and 10 kg/mol) were chosen such that the ratio of D to the polymer radius of gyration, Rg, is varied from 3.4, 2.3 to 1.9, respectively. It is found that the mean segmental relaxation rate remains bulk-like but an additional process arises at lower frequencies with increasing molecular weight (decreasing D/Rg. In contrast, the mean relaxation rates of the end-to-end dipole vector corresponding to chain dynamics are found to be slightly slower than that in the bulk for the systems approaching D/Rg ∼ 2, but faster than the bulk for the polymer with the largest molecular weight. The analysis of the spectral shapes of the chain relaxation suggests that the resulting dynamics of the 10kg/mol PI confined at length-scales close to that of the Rg are due to non-ideal chain conformations under confinement decreasing the chain relaxation times. The understanding of these faster chain dynamics of polymers under extreme geometrical confinement is necessary in designing nanodevices that contain polymeric materials within substrates approaching the molecular scale.

Graphical abstract


Topical issue: Dielectric Spectroscopy Applied to Soft Matter 


Supplementary material

10189_2019_759_MOESM1_ESM.pdf (378 kb)
Elucidating the impact of extreme nanoscale confinement on segmental and chain dynamics of unentangled poly(cis-1,4-isoprene)


  1. 1.
    G.D. Smith, D.Y. Yoon, R.L. Jaffe, Macromolecules 25, 7011 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    K. Shin, S. Obukhov, J.T. Chen, J. Huh, Y. Hwang, S. Mok, P. Dobriyal, P. Thiyagarajan, T.P. Russell, Nat. Mater. 6, 961 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    D. Qi, Z. Fakhraai, J.A. Forrest, Phys. Rev. Lett. 101, 096101 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    M. Hofmann, A. Herrmann, S. Ok, C. Franz, D. Kruk, K. Saalwächter, M. Steinhart, E.A. Rössler, Macromolecules 44, 4017 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    M. Krutyeva, A. Wischnewski, M. Monkenbusch, L. Willner, J. Maiz, C. Mijangos, A. Arbe, J. Colmenero, A. Radulescu, O. Holderer, M. Ohl, D. Richter, Phys. Rev. Lett. 110, 108303 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    A. Schonhals, F. Rittig, J. Karger, J. Chem. Phys. 133, 094903 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    S. Granick, Science 253, 1374 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    C. Alba-Simionesco, B. Coasne, G. Dosseh, G. Dudziak, K.E. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowiak, J. Phys.: Condens. Matter 18, R15 (2006)ADSGoogle Scholar
  9. 9.
    M. Alcoutlabi, G.B. McKenna, J. Phys.: Condens. Matter 17, R461 (2005)ADSGoogle Scholar
  10. 10.
    S. Napolitano, E. Glynos, N.B. Tito, Rep. Prog. Phys. 80, 036602 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    A. Serghei, D. Chen, D.H. Lee, T.P. Russell, Soft Matter 6, 1111 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    A. Schönhals, R. Zorn, B. Frick, Polymer 105, 393 (2016)CrossRefGoogle Scholar
  13. 13.
    A. Schönhals, H. Goering, C. Schick, B. Frick, R. Zorn, Eur. Phys. J. E 12, 173 (2003)CrossRefGoogle Scholar
  14. 14.
    K. Adrjanowicz, R. Winkler, K. Chat, D.M. Duarte, W. Tu, A.B. Unni, M. Paluch, K.L. Ngai, Macromolecules 52, 3763 (2019)ADSCrossRefGoogle Scholar
  15. 15.
    W.K. Kipnusu, M. Elsayed, R. Krause-Rehberg, F. Kremer, J. Chem. Phys. 146, 203302 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    M. Krutyeva, S. Pasini, M. Monkenbusch, J. Allgaier, J. Maiz, C. Mijangos, B. Hartmann-Azanza, M. Steinhart, N. Jalarvo, O. Ivanova, O. Holderer, A. Radulescu, M. Ohl, P. Falus, T. Unruh, D. Richter, J. Chem. Phys. 146, 203306 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    T. Uemura, N. Yanai, S. Watanabe, H. Tanaka, R. Numaguchi, M.T. Miyahara, Y. Ohta, M. Nagaoka, S. Kitagawa, Nat. Commun. 1, 83 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    M. Tarnacka, A. Talik, E. Kamińska, M. Geppert-Rybczyńska, K. Kaminski, M. Paluch, Macromolecules 52, 3516 (2019)ADSCrossRefGoogle Scholar
  19. 19.
    W.K. Kipnusu, M.M. Elmahdy, M. Elsayed, R. Krause-Rehberg, F. Kremer, Macromolecules 52, 1864 (2019)ADSCrossRefGoogle Scholar
  20. 20.
    A. Schönhals, H. Goering, C. Schick, J. Non-Cryst. Solids 305, 140 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    M. Tarnacka, K. Kaminski, E.U. Mapesa, E. Kaminska, M. Paluch, Macromolecules 49, 6678 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    J. Schueller, Y.B. Melʼnichenko, R. Richert, E.W. Fischer, Phys. Rev. Lett. 73, 2224 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    L. Petychakis, G. Floudas, G. Fleischer, Europhys. Lett. 40, 685 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    S. Alexandris, G. Sakellariou, M. Steinhart, G. Floudas, Macromolecules 47, 3895 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    E.U. Mapesa, L. Popp, W.K. Kipnusu, M. Tress, F. Kremer, Soft Mater. 12, S22 (2014)CrossRefGoogle Scholar
  26. 26.
    W.H. Stockmeyer, Pure Appl. Chem. 15, 539 (1967)CrossRefGoogle Scholar
  27. 27.
    L. Zaraska, G.D. Sulka, M. Jaskuła, J. Solid State Electrochem. 15, 2427 (2011)CrossRefGoogle Scholar
  28. 28.
    D. Uhrig, J.W. Mays, J. Polym. Sci. Part A: Polym. Chem. 43, 6179 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    A. Panagopoulou, S. Napolitano, Phys. Rev. Lett. 119, 097801 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    S. Napolitano, M. Wübbenhorst, Nat. Commun. 2, 260 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy, 1 edition (Springer, Berlin, 2003) p. 729Google Scholar
  32. 32.
    W.H. Stockmeyer, M.E. Baur, J. Am. Chem. Soc. 86, 3485 (1964)CrossRefGoogle Scholar
  33. 33.
    C.M. Roland, M.J. Schroeder, J.J. Fontanella, K.L. Ngai, Macromolecules 37, 2630 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    A. Serghei, F. Kremer, Phys. Rev. Lett. 91, 165702 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Yao, H.-J. Butt, J. Zhou, M. Doi, G. Floudas, Macromolecules 51, 3059 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    L.Z. Sun, C.H. Wang, M.B. Luo, H. Li, J. Chem. Phys. 150, 024904 (2019)ADSCrossRefGoogle Scholar
  37. 37.
    A. Elfadl, R. Kahlau, A. Herrmann, V.N. Novikov, E.A. Rössler, Macromolecules 43, 3340 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    P.E. Rouse, J. Chem. Phys. 21, 1272 (1953)ADSCrossRefGoogle Scholar
  39. 39.
    T. Zhang, K.I. Winey, R.A. Riggleman, Macromolecules 52, 217 (2018)ADSCrossRefGoogle Scholar
  40. 40.
    K. Adrjanowicz, M. Paluch, Phys. Rev. Lett. 122, 176101 (2019)ADSCrossRefGoogle Scholar
  41. 41.
    C. Politidis, S. Alexandris, G. Sakellariou, M. Steinhart, G. Floudas, Macromolecules 52, 4185 (2019)ADSCrossRefGoogle Scholar
  42. 42.
    M. Krutyeva, J. Martin, A. Arbe, J. Colmenero, C. Mijangos, G.J. Schneider, T. Unruh, Y. Su, D. Richter, J. Chem. Phys. 131, 174901 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    J. Martin, M. Krutyeva, M. Monkenbusch, A. Arbe, J. Allgaier, A. Radulescu, P. Falus, J. Maiz, C. Mijangos, J. Colmenero, D. Richter, Phys. Rev. Lett. 104, 197801 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    L.J. Fetters, N. Hadjichristidis, J.S. Lindner, J.W. Mays, J. Phys. Chem. Ref. Data 23, 619 (1994)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Thomas Kinsey
    • 1
  • Emmanuel Mapesa
    • 1
  • Tyler Cosby
    • 1
  • Youjun He
    • 2
  • Kunlun Hong
    • 2
  • Yangyang Wang
    • 2
  • Ciprian Iacob
    • 3
    • 4
  • Joshua Sangoro
    • 1
    Email author
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of TennesseeKnoxvilleUSA
  2. 2.Center for Nanophase Materials ScienceOak Ridge National LaboratoryOak RidgeUSA
  3. 3.National Research and Development Institute for Cryogenic and Isotopic Technologies, ICSI Rm. ValceaRm. ValceaRomania
  4. 4.Karlsruhe Institute of Technology (KIT)Institute for Chemical Technology and Polymer ChemistryKarlsruheGermany

Personalised recommendations