Advertisement

Roughness-enhanced collection of condensed droplets

  • Joachim TrosseilleEmail author
  • Anne Mongruel
  • Laurent Royon
  • Marie-Gabrielle Medici
  • Daniel Beysens
Regular Article
  • 25 Downloads

Abstract.

Gravity shedding of droplets is limited by droplet pinning, a major limitation for low condensation processes and in particular passive dew harvesting in its use as an alternative source of water. We present experiments showing that, paradoxically, a simple surface treatment increasing roughness (sand-blasting) favors droplet shedding compared to the original substrate, provided that sand-blasting does not increase too much the surface roughness. Sand-blasting ensures the high density of nucleation sites and enhances drops coalescence and growth at a sub-micron scale, thus lowering the lag-time to obtain drop sliding during condensation. Early nucleation indeed overcompensates the delay increase due to roughness. Edges of the substrate, where drops grow faster, also improve water collection, thanks to the early sliding of edge drops that behave as natural wipers. Combining the effects of sand-blasting and edges increases significantly the rate of collection of dew condensation on a substrate at a given time, gains of about 30% can be commonly obtained.

Graphical abstract

Keywords

Flowing Matter: Interfacial phenomena 

References

  1. 1.
    D. Beysens, I. Milimouk, Secheresse 11, 281 (2000)Google Scholar
  2. 2.
    M. Tomaszkiewicz, M. Abou Najm, D. Beysens, I. Alameddine, M. El-Fadel, Environ. Rev. 23, 425 (2015)CrossRefGoogle Scholar
  3. 3.
    D. Beysens, Dew Water (River Publishers, Aalborg, 2018)Google Scholar
  4. 4.
    Y. Jin, L. Zhang, P. Wang, Glob. Chall. 1, 1700019 (2017)CrossRefGoogle Scholar
  5. 5.
    A. Lee, M.-W. Moon, H. Lim, W.-D. Kim, H.-Y. Kim, Langmuir 28, 10183 (2012)CrossRefGoogle Scholar
  6. 6.
    S. Anand, A.T. Paxson, J.D. Smith, R. Dhiman, K.K. Varanasi, Droplet condensation and growth on nanotextured surfaces impregnated with an immiscible liquid, in APS March Meeting 2012, Bull. Am. Phys. Soc. Vol. 57 (APS, 2012) http://meetings.aps.org/link/BAPS.2012.MAR.X50.11
  7. 7.
    P.-B. Bintein, H. Lhuissier, A. Mongruel, L. Royon, D. Beysens, Phys. Rev. Lett. 122, 098005 (2019)ADSCrossRefGoogle Scholar
  8. 8.
    D.R. Lide (Editor), CRC Handbook of Chemistry and Physics, 79th edition (CRC Press, 1998)Google Scholar
  9. 9.
    P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    J.F. Joanny, P.G. DeGennes, J. Chem. Phys. 81, 552 (1984)ADSCrossRefGoogle Scholar
  11. 11.
    M.E.R. Shanahan, J. Appl. Phys. 23, 321 (1990)Google Scholar
  12. 12.
    A.L. Dubov, J. Teisseire, E. Barthel, EPL 97, 26003 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    J.J. Bikerman, J. Colloid Sci. 5, 349 (1950)CrossRefGoogle Scholar
  14. 14.
    C.W. Extrand, A.N. Gent, J. Colloid Interface Sci. 138, 431 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Langmuir 16, 5754 (2000)CrossRefGoogle Scholar
  16. 16.
    M. Reyssat, D. Quere, J. Phys. Chem. B 113, 3906 (2009)CrossRefGoogle Scholar
  17. 17.
    J. Hyväluoma, A. Koponen, P. Raiskinmäki, J. Timonen, Eur. Phys. J. E 23, 289 (2007)CrossRefGoogle Scholar
  18. 18.
    H. Zhao, D. Beysens, Langmuir 11, 627 (1995)CrossRefGoogle Scholar
  19. 19.
    M.-G. Medici, A. Mongruel, L. Royon, D. Beysens, Phys. Rev. E 90, 062403 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    M. Sokuler, G.K. Auernhammer, C.J. Liu, E. Bonaccurso, H.-J. Butt, EPL 89, 36004 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    S.W. Churchill, H.H.S. Chu, Int. J. Heat Mass Transfer 18, 1323 (1975)CrossRefGoogle Scholar
  22. 22.
    E. Radziemska, W.M. Lewandowski, Appl. Energy 68, 347366 (2001)CrossRefGoogle Scholar
  23. 23.
    R. Narhe, D. Beysens, Langmuir 20, 1213 (2004)CrossRefGoogle Scholar
  24. 24.
    A.I. ElSherbini, A.M. Jacobi, J. Colloid Interface Sci. 299, 841 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    B. Krasovitski, A. Marmur, Langmuir 21, 3881 (2005)CrossRefGoogle Scholar
  26. 26.
    R.A. Brown, F.M. Orr Jr., L.E. Scriven, J. Colloid Interface Sci. 73, 76 (1980)ADSCrossRefGoogle Scholar
  27. 27.
    F. Milinazzo, M. Shinbrot, J. Colloid Interface Sci. 121, 254 (1988)ADSCrossRefGoogle Scholar
  28. 28.
    N. Gao, F. Geyer, D.W. Pilat, S. Wooh, D. Vollmer, H.-J. Butt, R. Berger, Nat. Phys. 14, 191 (2018)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Joachim Trosseille
    • 1
    Email author
  • Anne Mongruel
    • 1
  • Laurent Royon
    • 2
  • Marie-Gabrielle Medici
    • 3
  • Daniel Beysens
    • 1
    • 4
  1. 1.Physique et Mécanique des Milieux HétérogènesCNRS, ESPCI Paris - PSL University, Sorbonne Université, Sorbonne Paris CitéParisFrance
  2. 2.Laboratoire des Energies de DemainSorbonne Paris Cité, UMR 8236CNRSParisFrance
  3. 3.Institut de Physique de NiceCNRS Université de Nice Sophia AntipolisNiceFrance
  4. 4.OPURParisFrance

Personalised recommendations