Advertisement

A simple statistical-mechanical interpretation of Onsager reciprocal relations and Derjaguin theory of thermo-osmosis

  • Oded FaragoEmail author
Regular Article

Abstract.

The application of a temperature gradient along a fluid-solid interface generates stresses in the fluid causing “thermo-osmotic” flow. Much of the understanding of this phenomenon is based on Derjaguin's work relating thermo-osmotic flows to the mechano-caloric effect, namely, the interfacial heat flow induced by a pressure gradient. This is done by using Onsager's reciprocity relationship for the equivalence of the thermo-osmotic and mechano-caloric cross-term transport coefficients. Both Derjaguin theory and Onsager framework for out-of-equilibrium systems are formulated in macroscopic thermodynamics terms and lack a clear interpretation at the molecular level. Here, we use statistical-mechanical tools to derive expressions for the transport cross-coefficients and, thereby, to directly demonstrate their equality. This is done for two basic models: i) an incopressible continuum solvent containing non-interacting solute particles, and ii) a single-component fluid without thermal expansivity. The derivation of the mechano-caloric coefficient appears to be remarkably simple, and provides a simple interpretation for the connection between interfacial heat and particle fluxes. We use this interpretation to consider yet another example, which is an electrolyte interacting with a uniformly charged surface in the strong screening (Debye-Hückel) regime.

Graphical abstract

Keywords

Soft Matter: Interfacial Phenomena and Nanostructured Surfaces 

Notes

References

  1. 1.
    S. Marbach, L. Bocquet, Chem. Soc. Rev. 48, 3102 (2019)CrossRefGoogle Scholar
  2. 2.
    S. Wall, Curr. Opin. Colloid Interface Sci. 15, 119 (2010)CrossRefGoogle Scholar
  3. 3.
    P. Bacchin, K. Glavatskiy, V. Gerbaud, Phys. Chem. Chem. Phys. 21, 10114 (2019)CrossRefGoogle Scholar
  4. 4.
    V.M. Barragán, S. Kjelstrup, J. Non-Equilib. Thermodyn. 42, 217 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    B. Derjaguin, N. Churaev, V. Muller, Surface Forces (Plenum, New York, 1987)Google Scholar
  6. 6.
    H.A. Stone, A.D. Stroock, A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    J. Imbrogno, G. Belfort, Annu. Rev. Chem. Biomol. Eng. 7, 29 (2016)CrossRefGoogle Scholar
  8. 8.
    H. Lodish, Molecular Cell Biology, 4th ed. (W.H. Freeman, New York, 2000)Google Scholar
  9. 9.
    G. Lippmann, C. R. Acad. Sci. 145, 104 (1907)Google Scholar
  10. 10.
    L. Onsager, Phys. Rev. 37, 405 (1931)ADSCrossRefGoogle Scholar
  11. 11.
    L. Onsager, Phys. Rev. 38, 2265 (1931)ADSCrossRefGoogle Scholar
  12. 12.
    A.P. Bregulla et al., Phys. Rev. Lett. 116, 188303 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    R. Ganti, Y. Liu, D. Frenkel, Phys. Rev. Lett. 119, 038002 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    S.R. De Groot, P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1969)Google Scholar
  15. 15.
    A. Würger, Rep. Prog. Phys. 73, 126601 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    P. Anzini, G.M. Colombo, Z. Filiberti, A. Parola, Phys. Rev. Lett. 123, 028002 (2019)ADSCrossRefGoogle Scholar
  17. 17.
    G.P. Beretta, E.P. Gyftopoulos, J. Chem. Phys. 121, 2718 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    J.L. Anderson, M.E. Lowell, D.C. Prieve, J. Fluid Mech. 117, 107 (1982)ADSCrossRefGoogle Scholar
  19. 19.
    S. Fayolle, T. Bickel, A. Würger, Phys. Rev. E 77, 041404 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    O. Farago, Phys. Rev. E 99, 062108 (2019)ADSCrossRefGoogle Scholar
  21. 21.
    R. Piazza, A. Parola, J. Phys.: Condens. Matter 20, 153102 (2008)ADSGoogle Scholar
  22. 22.
    L. Fu, S. Merabia, L. Joly, Phys. Rev. Lett. 119, 214501 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes (Springer, Berlin, 2007)Google Scholar
  24. 24.
    H. Brenner, Chem. Eng. Sci. 16, 242 (1961)CrossRefGoogle Scholar
  25. 25.
    D. Andelman, in Handbook of Biological Physics, edited by R. Lipowsky, E. Sackmann, Vol. 1 (Elsevier Amsterdam, 1995) Chapt. 12Google Scholar
  26. 26.
    S.N. Rasuli, R. Golestanian, Phys. Rev. Lett. 101, 108301 (2008)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CambridgeCambridgeUK
  2. 2.Department of Biomedical EngineeringBen-Gurion University of the NegevBe’er ShevaIsrael

Personalised recommendations