Advertisement

What dielectric spectroscopy can tell us about supramolecular networks

  • Martin TressEmail author
  • Kunyue Xing
  • Sirui Ge
  • Pengfei Cao
  • Tomonori Saito
  • Alexei SokolovEmail author
Regular Article
  • 41 Downloads
Part of the following topical collections:
  1. Dielectric Spectroscopy Applied to Soft Matter

Abstract.

Polymers which can form supramolecular networks are a promising class of materials to provide highly sought-after properties such as self-healing, enhanced mechanical strength, super-stretchability as well as easy recyclability. However, due to the vast range of possible chemical structures it is very demanding to optimize these materials for the desired performance. Consequently, a detailed understanding of the molecular processes that govern the macroscopic properties is paramount to their technological application. Here we discuss some telechelic model systems with hydrogen-bonding end groups and how dielectric spectroscopy in combination with linear oscillatory shear rheology helped to understand the association mechanism on a molecular scale, and verify the model of bond-lifetime renormalization. Furthermore, we analyze a limitation of these H-bonding polymers, namely that there is a trade-off between high plateau modulus and long terminal relaxation time --both cannot be maximized at the same time. Finally, we show how more complex end groups phase separate from the main chain melt and thus lead to a more sophisticated rheological behavior which can overcome that limitation.

Graphical abstract

Keywords

Topical issue: Dielectric Spectroscopy Applied to Soft Matter 

References

  1. 1.
    R.P. Sijbesma, F.H. Beijer, L. Brunsveld, B.J.B. Folmer, J.H.K.K. Hirschberg, R.F.M. Lange, J.K.L. Lowe, E.W. Meijer, Science 278, 1601 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Nature 451, 977 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    M. Burnworth, L. Tang, J.R. Kumpfer, A.J. Duncan, F.L. Beyer, G.L. Fiore, S.J. Rowan, C. Weder, Nature 472, 334 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    J. Kang, D. Miyajima, T. Mori, Y. Inoue, Y. Itoh, T. Aida, Science 347, 646 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Yanagisawa, Y. Nan, K. Okuro, T. Aida, Science 359, 72 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    E. Filippidi, T.R. Cristiani, C.D. Eisenbach, J.H. Waite, J.N. Israelachvili, B.K. Ahn, M.T. Valentine, Science 358, 502 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    R.J. Varley, S. Shen, S. van der Zwaag, Polymer 51, 679 (2010)CrossRefGoogle Scholar
  8. 8.
    R.K. Bose, N. Hohlbein, S.J. Garcia, A.M. Schmidt, S. van der Zwaag, Phys. Chem. Chem. Phys. 17, 1697 (2015)CrossRefGoogle Scholar
  9. 9.
    D.-D. Zhang, Y.-B. Ruan, B.-Q. Zhang, X. Qiao, G. Deng, Y. Chen, C.-Y. Liu, Polymer 120, 189 (2017)CrossRefGoogle Scholar
  10. 10.
    A. Campanella, D. Döhler, W.H. Binder, Macromol. Rapid Commun. 39, 1700739 (2018)CrossRefGoogle Scholar
  11. 11.
    K. Yu, A. Xin, Q. Wang, J. Mech. Phys. Solids 121, 409 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    P.-F. Cao, B. Li, T. Hong, J. Townsend, Z. Qiang, K. Xing, K.D. Vogiatzis, Y. Wang, J.W. Mays, A.P. Sokolov, T. Saito, Adv. Funct. Mater. 28, 1800741 (2018)CrossRefGoogle Scholar
  13. 13.
    X. Hu, J. Zhou, M. Vatankhah-Varnosfaderani, W.F.M. Daniel, Q. Li, A.P. Zhushma, A.V. Dobrynin, S.S. Sheiko, Nat. Commun. 7, 12919 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    J. Li, J.A. Viveros, M.H. Wrue, M. Anthamatten, Adv. Mater. 19, 2851 (2007)CrossRefGoogle Scholar
  15. 15.
    B.J.B. Folmer, R.P. Sijbesma, R.M. Versteegen, J.A.J. van der Rijt, E.W. Meijer, Adv. Mater. 12, 874 (2000)CrossRefGoogle Scholar
  16. 16.
    K.E. Feldman, M.J. Kade, E.W. Meijer, C.J. Hawker, E.J. Kramer, Macromolecules 42, 9072 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Z.P. Zhang, M.Z. Rong, M.Q. Zhang, Prog. Polym. Sci. 80, 39 (2018)CrossRefGoogle Scholar
  18. 18.
    S.-L. Li, T. Xiao, C. Lin, L. Wang, Chem. Soc. Rev. 41, 5950 (2012)CrossRefGoogle Scholar
  19. 19.
    A. Kulkarni, A. Lele, S. Sivaram, P.R. Rajamohanan, S. Velankar, A. Chatterji, Macromolecules 48, 6580 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    R.D. Lundberg, H.S. Makowski, L. Westerman, in Ions in Polymers (American Chemical Society, Washington DC, 1980)Google Scholar
  21. 21.
    A.J. Wilson, Soft Matter 3, 409 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    A.C. Legon, D.J. Millen, Acc. Chem. Res. 20, 39 (1987)CrossRefGoogle Scholar
  23. 23.
    W.W. Cleland, P.A. Frey, J.A. Gerlt, J. Biol. Chem. 273, 25529 (1998)CrossRefGoogle Scholar
  24. 24.
    J.-M. Lehn, Makromol. Chem. Macromol. Symp. 69, 1 (1993)CrossRefGoogle Scholar
  25. 25.
    T. Yan, K. Schröter, F. Herbst, W.H. Binder, T. Thurn-Albrecht, Macromolecules 50, 2973 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    G. Broze, R. Jerome, Ph. Teyssie, C. Marco, J. Polym. Sci.: Polym. Phys. 21, 2205 (1983)ADSGoogle Scholar
  27. 27.
    F. Herbst, K. Schröter, I. Gunkel, S. Gröger, T. Thurn-Albrecht, J. Balbach, W.H. Binder, Macromolecules 43, 10006 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    J. Lacombe, C. Soulie-Ziakovic, Polym. Chem. 8, 5954 (2017)CrossRefGoogle Scholar
  29. 29.
    E.A. Appel, R.A. Forster, A. Koutsioubas, C. Toprakcioglu, O.A. Scherman, Angew. Chem. 126, 10202 (2014)CrossRefGoogle Scholar
  30. 30.
    J. Horrion, R. Jerome, Ph. Teyssie, C. Marco, C.E. Williams, Polymer 29, 1203 (1988)CrossRefGoogle Scholar
  31. 31.
    F.J. Stadler, W. Pyckhout-Hintzen, J.-M. Schumers, C.-A. Fustin, J.-F. Gohy, C. Bailly, Macromolecules 42, 6181 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    D.J. Yarusso, S.L. Cooper, Macromolecules 16, 1871 (1983)ADSCrossRefGoogle Scholar
  33. 33.
    C. Slusarczyk, A. Włochowicz, A. Gronowski, Z. Wojtczak, Polymer 29, 1581 (1988)CrossRefGoogle Scholar
  34. 34.
    J. Ledent, F. Fontaine, H. Reynaers, R. Jerome, Polym. Bull. 14, 461 (1985)CrossRefGoogle Scholar
  35. 35.
    W.J. Macknight, W.P. Taggart, R.S. Stein, J. Polym. Sci.: Polym. Symp. 45, 113 (1974)Google Scholar
  36. 36.
    G. Broze, R. Jerome, P. Teyssie, C. Marco, Macromolecules 16, 996 (1983)ADSCrossRefGoogle Scholar
  37. 37.
    G. Broze, R. Jerome, P. Teyssie, C. Marco, Macromolecules 16, 1771 (1983)ADSCrossRefGoogle Scholar
  38. 38.
    L.J. Fetters, W.W. Graessley, N. Hadjichristidis, A.D. Kiss, D.S. Pearson, L.B. Younghouse, Macromolecules 21, 1644 (1988)ADSCrossRefGoogle Scholar
  39. 39.
    M. Müller, E.W. Fischer, F. Kremer, U. Seidel, R. Stadler, Colloid Polym. Sci. 273, 38 (1995)CrossRefGoogle Scholar
  40. 40.
    M. Müller, R. Stadler, F. Kremer, G. Williams, Macromolecules 28, 6942 (1995)ADSCrossRefGoogle Scholar
  41. 41.
    B.J. Gold, C.H. Hövelmann, C. Weiss, A. Radulescu, J. Allgaier, W. Pyckhout-Hintzen, A. Wischnewski, D. Richter, Polymer 87, 123 (2016)CrossRefGoogle Scholar
  42. 42.
    W. Denissen, J.M. Winne, F.E. Du Prez, Chem. Sci. 7, 30 (2016)CrossRefGoogle Scholar
  43. 43.
    D.J. Fortman, J.P. Brutman, G.X. De Hoe, R.L. Snyder, W.R. Dichtel, M.A. Hillmyer, ACS Sustain. Chem. Eng. 6, 11145 (2018)CrossRefGoogle Scholar
  44. 44.
    B.J. Gold, C.H. Hövelmann, N. Lühmann, N.K. Szekely, W. Pyckhout-Hintzen, A. Wischnewski, D. Richter, ACS Macro Lett. 6, 73 (2017)CrossRefGoogle Scholar
  45. 45.
    B.J. Gold, C.H. Hövelmann, N. Lühmann, W. Pyckhout-Hintzen, A. Wischnewski, D. Richter, J. Rheol. 61, 1211 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    A. Shabbir, I. Javakhishvili, S. Cerveny, S. Hvilsted, A.L. Skov, O. Hassager, N.J. Alvarez, Macromolecules 49, 3899 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    K. Xing, M. Tress, P. Cao, S. Cheng, T. Saito, V.N. Novikov, A.P. Sokolov, Soft Matter 14, 1235 (2018)ADSCrossRefGoogle Scholar
  48. 48.
    K. Xing, M. Tress, P. Cao, F. Fan, S. Cheng, T. Saito, A.P. Sokolov, Macromolecules 49, 3138 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    H. Wagner, R. Richert, J. Phys. Chem. B 103, 4071 (1999)CrossRefGoogle Scholar
  50. 50.
    S. Havriliak, S. Negami, Polymer 8, 161 (1967)CrossRefGoogle Scholar
  51. 51.
    F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (Springer, Berlin, Heidelberg, 2003)Google Scholar
  52. 52.
    M. Wübbenhorst, J. van Turnhout, J. Non-Cryst. Solids 40, 305 (2002)Google Scholar
  53. 53.
    H. Vogel, Phys. Z. 22, 645 (1921)Google Scholar
  54. 54.
    G.S. Fulcher, J. Am. Chem. Soc. 8, 339 (1925)Google Scholar
  55. 55.
    G. Tammann, W. Hesse, Z. Anorg. Allg. Chem. 156, 245 (1926)CrossRefGoogle Scholar
  56. 56.
    Z. Zhang, Q. Chen, R.H. Colby, Soft Matter 14, 2961 (2018)ADSCrossRefGoogle Scholar
  57. 57.
    H. Goldansaz, C.-A. Fustin, M. Wübbenhorst, E. van Ruymbeke, Macromolecules 49, 1890 (2016)ADSCrossRefGoogle Scholar
  58. 58.
    Q. Chen, G.J. Tudryn, R.H. Colby, J. Rheol. 57, 1441 (2013)ADSCrossRefGoogle Scholar
  59. 59.
    Y. Matsumiya, H. Watanabe, O. Urakawa, T. Inoue, Macromolecules 49, 7088 (2016)ADSCrossRefGoogle Scholar
  60. 60.
    K.S. Gilroy, W.A. Phillips, Phil. Mag. B 13, 735 (1981)ADSCrossRefGoogle Scholar
  61. 61.
    Y. Yanagisawa, Y. Nan, K. Okuro, T. Aida, Science 359, 72 (2018)ADSCrossRefGoogle Scholar
  62. 62.
    B. Hartmann, G.F. Lee, J.D. Lee, J. Acoust. Soc. Am. 95, 226 (1994)ADSCrossRefGoogle Scholar
  63. 63.
    T. Nicolai, G. Floudas, Macromolecules 31, 2578 (1998)ADSCrossRefGoogle Scholar
  64. 64.
    F. Tanaka, S. Edwards, Macromolecules 25, 1516 (1992)ADSCrossRefGoogle Scholar
  65. 65.
    F. Tanaka, S. Edwards, J. Non-Newton. Fluid Mech. 43, 247 (1992)CrossRefGoogle Scholar
  66. 66.
    S. Ge, M. Tress, K. Xing, P.-F. Cao, T. Saito, A.P. Sokolov, unpublished (2019). Google Scholar
  67. 67.
    E.B. Stukalin, L.-H. Cai, N.A. Kumar, L. Leibler, M. Rubinstein, Macromolecules 46, 7525 (2013)ADSCrossRefGoogle Scholar
  68. 68.
    J.H.K.K. Hirschberg, F.H. Beijer, H.A. van Aert, P.C.M.M. Magusin, R.P. Sijbesma, E.W. Meijer, Macromolecules 32, 2696 (1999)ADSCrossRefGoogle Scholar
  69. 69.
    S. Chen, D. Döhler, W.H. Binder, Polymer 107, 466 (2016)CrossRefGoogle Scholar
  70. 70.
    A. Jangizehia, S.R. Ghaffariana, G. Nikravana, S. Jamalpour, Thermochim. Acta 661, 34 (2018)CrossRefGoogle Scholar
  71. 71.
    A.N. Semenov, M. Rubinstein, Macromolecules 35, 4821 (2002)ADSCrossRefGoogle Scholar
  72. 72.
    L.M. Espinosa, S. Balog, C. Weder, ACS Macro Lett. 3, 540 (2014)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Tennessee, KnoxvilleKnoxvilleUSA
  2. 2.Department of Materials ScienceUniversity of Tennessee, KnoxvilleKnoxvilleUSA
  3. 3.Oak Ridge National LaboratoryChemical Sciences DivisionOak RidgeUSA

Personalised recommendations