Advertisement

Effect of surface-active contaminants on radial thermocapillary flows

  • T. BickelEmail author
Regular Article
  • 36 Downloads

Abstract.

We study the thermocapillary creeping flow induced by a thermal gradient at the liquid-air interface in the presence of insoluble surfactants (impurities). Convective sweeping of the surfactants causes density inhomogeneities that confers in-plane elastic features to the interface. This mechanism is discussed for radially symmetric temperature fields, in both the deep and shallow water regimes. When mass transport is controlled by convection, it is found that surfactants are depleted from a region whose size is inversely proportional to the interfacial elasticity. Both the concentration and the velocity fields follow power laws at the border of the depleted region. Finally, it is shown that this singular behavior is smeared out when molecular diffusion is accounted for.

Graphical abstract

Keywords

Flowing Matter: Interfacial phenomena 

References

  1. 1.
    L.E. Scriven, Nature 187, 186 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    V.G. Levich, Physicochemical Hydrodynamics (Prentice Hall, 1962)Google Scholar
  3. 3.
    S.H. Davis, Annu. Rev. Fluid Mech. 19, 403 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    G. Van der Mensbrugghe, Mem. Cour. Acad. R. Sci. Belg. 34, 1 (1869)Google Scholar
  5. 5.
    K. Sefiane, C.A. Ward, Adv. Colloid Interface Sci. 134-135, 201 (2007)CrossRefGoogle Scholar
  6. 6.
    A. Karbalaei, R. Kumar, H.J. Cho, Micromachines 7, 13 (2016)CrossRefGoogle Scholar
  7. 7.
    R. Muruganathan, Y. Zhang, T.M. Fischer, J. Am. Chem. Soc. 128, 3474 (2006)CrossRefGoogle Scholar
  8. 8.
    C.N. Baroud, M.R. de Saint-Vincent, J.-P. Delville, Lab Chip 7, 1029 (2007)CrossRefGoogle Scholar
  9. 9.
    B. Pottier, C. Frétigny, L. Talini, Phys. Rev. Lett. 114, 227801 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    C. Maggi, F. Saglimbeni, M. Dipalo, F. De Angelis, R. Di Leonardo, Nat. Commun. 6, 7855 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    A. Girot, N. Danné, A. Würger, T. Bickel, F. Ren, J.-C. Loudet, B. Pouligny, Langmuir 32, 2687 (2016)CrossRefGoogle Scholar
  12. 12.
    M.-C. Zhong, Z.-Q. Wang, Y.-M. Li, Opt. Express 25, 2481 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    I.K. Bratukhin, L.N. Maurin, J. Appl. Math. Mech. 31, 605 (1967)CrossRefGoogle Scholar
  14. 14.
    R.V. Birikh, V.A. Briskman, M.G. Velarde, J.-C. Legros, Liquid Interfacial Systems (Marcel Dekker, 2003)Google Scholar
  15. 15.
    A. Ito, S.K. Choudhury, T. Fukano, JSME Int. J. -- Ser. II 33, 128 (1990)ADSGoogle Scholar
  16. 16.
    T.-C. Wu, Y.-M. Yang, J.-R. Maa, Int. Commun. Heat Mass Transfer 27, 655 (2000)CrossRefGoogle Scholar
  17. 17.
    T.-C. Wu, Y.-M. Yang, J.-R. Maa, Int. Commun. Heat Mass Transfer 28, 357 (2001)CrossRefGoogle Scholar
  18. 18.
    E. Favre, L. Blumenfeld, F. Daviaud, Phys. Fluids 9, 1473 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    A. Mizev, Phys. Fluids 17, 122107 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    V. Shtern, F. Hussain, J. Fluid Mech. 256, 535 (1993)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    J.C. Berg, A. Acrivos, Chem. Eng. Sci. 20, 737 (1965)CrossRefGoogle Scholar
  22. 22.
    C. Ybert, J.-M. di Meglio, Eur. Phys. J. E 3, 143 (2000)CrossRefGoogle Scholar
  23. 23.
    G.M. Homsy, E. Meiburg, J. Fluid Mech. 139, 443 (1984)ADSCrossRefGoogle Scholar
  24. 24.
    B. Carpenter, G.M. Homsy, J. Fluid Mech. 155, 429 (1985)ADSCrossRefGoogle Scholar
  25. 25.
    A. Shmyrov, A. Mizev, V. Demin, M. Petukhov, D. Bratsun, Adv. Colloid Interface Sci. 225, 10 (2018)CrossRefGoogle Scholar
  26. 26.
    Z. Khattari, P. Steffen, T.M. Fischer, J. Phys.: Condens. Matter 14, 4823 (2002)ADSGoogle Scholar
  27. 27.
    S. Das, S. mandal, S.K. Som, S. Chakraborty, Phys. Fluids 29, 012002 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    A. Srivastava, N. Tiwari, Eur. Phys. J. E 41, 56 (2018)CrossRefGoogle Scholar
  29. 29.
    P.A. Kralchevsky, K.D. Danov, N.D. Denkov, Chemical Physics of Colloid Systems and Interfaces, in Handbook of Surface and Colloid Chemistry (CRC Press, 2015)Google Scholar
  30. 30.
    T. Bickel, Soft Matter 15, 3644 (2019)ADSCrossRefGoogle Scholar
  31. 31.
    A. Würger, J. Fluid Mech. 752, 589 (2014)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    R. Piessens, The Hankel Transform, in Transforms and Applications Handbook (CRC Press, 2010)Google Scholar
  33. 33.
    H. Chraibi, J.-P. Delville, Phys. Fluids 24, 032102 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    T. Bickel, Phys. Rev. E 75, 041403 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    I.N. Sneddon, Mixed Boundary Value Problems in Potential Theory (J. Wiley & Sons, 1966)Google Scholar
  36. 36.
    D.G. Duffy, Mixed Boundary Value Problems (Chapman & Hall/CRC, 2008). Google Scholar
  37. 37.
    M.L. Cordero, E. Verneuil, F. Gallaire, C.N. Baroud, Phys. Rev. E 79, 011201 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    D. Rivière, B. Selva, H. Chraibi, U. Delabre, J.-P. Delville, Phys. Rev. E 93, 023112 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    M. Robert de Saint Vincent, J.-P. Delville, Phys. Rev. Fluids 1, 043901 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    N. Kavokine, M. Anyfantakis, M. Morel, S. Rudiuk, T. Bickel, D. Baigl, Angew. Chem. Int. Ed. 55, 11183 (2016)CrossRefGoogle Scholar
  41. 41.
    R. Leite Pinto, S. Le Roux, I. Cantat, A. Saint-Jalmes, Phys. Rev. Fluids 3, 024003 (2018)ADSCrossRefGoogle Scholar
  42. 42.
    R.V. Craster, O.K. Matar, Rev. Mod. Phys. 81, 1131 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    T. Bickel, J.-C. Loudet, G. Koleski, B. Pouligny, arXiv:1909.13540 (2019)Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Univ. Bordeaux, CNRS, Laboratoire Ondes et Matière d’Aquitaine (UMR 5798)TalenceFrance

Personalised recommendations