Numerical modelling of long flexible fibers in homogeneous isotropic turbulence

  • Mostafa Sulaiman
  • Eric ClimentEmail author
  • Blaise Delmotte
  • Pascal Fede
  • Franck Plouraboué
  • Gautier Verhille
Regular Article
Part of the following topical collections:
  1. Flowing Matter, Problems and Applications


We numerically investigated the transport, deformation and buckling events of an isolated elastic fiber in Taylor-Green vortices and studied the dynamics of long filaments in homogeneous isotropic turbulence. The fiber is modelled by an assembly of spherical beads. The contact between beads enforces the inextensibility of the filament while bending is accounted for by the Gears Bead Model (GBM) proposed by Delmotte et al. (2015). In the cellular Taylor-Green flow, the buckling probability is a function of a dimensionless number, called Sperm number, which is a balance between the compression rate of the flow and the elastic response of the filament. The shapes of the filament and its ability to buckle have been successfully validated through comparisons with experiments from the work by Quennouz et al. (2015). The deformation statistics of long flexible fibers in sustained homogeneous isotropic turbulence were analyzed for various flow and fiber material conditions. Two regimes have been identified depending on the ratio of fiber length to persistence length which is a measure of turbulent forcing to flexibility. The numerical results are in good agreement with existing experimental data (C. Brouzet et al., Phys. Rev. Lett. 112, 074501 (2014)) validating the assumptions of our model for the configurations we investigated.

Graphical abstract


Topical issue: Flowing Matter, Problems and Applications 



  1. 1.
    J.S. Guasto, R. Rusconi, R. Stocker, Annu. Rev. Fluid Mech. 44, 373 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    F. Lundell, L.D. Söderberg, P.H. Alfredsson, Annu. Rev. Fluid Mech. 43, 195 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    R. Cox, J. Fluid Mech. 45, 625 (1971)ADSCrossRefGoogle Scholar
  4. 4.
    A. Meunier, J. Phys. II 4, 561 (1994)Google Scholar
  5. 5.
    G.A. Voth, A. Soldati, Annu. Rev. Fluid Mech. 49, 249 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    C. Marchioli, M. Fantoni, A. Soldati, Phys. Fluids 22, 033301 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    D. Kunhappan, B. Harthong, B. Chareyre, G. Balarac, P. Dumont, Phys. Fluids 29, 093302 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    N.S. Berman, Annu. Rev. Fluid Mech. 10, 47 (1978)ADSCrossRefGoogle Scholar
  9. 9.
    A. Robert, T. Vaithianathan, L.R. Collins, J.G. Brasseur, J. Fluid Mech. 657, 189 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    S. Jin, L.R. Collins, New J. Phys. 9, 360 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    E. Wandersman, N. Quennouz, M. Fermigier, A. Lindner, O. Du Roure, Soft Matter 6, 5715 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Y.N. Young, M.J. Shelley, Phys. Rev. Lett. 99, 058303 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    N. Quennouz, M. Shelley, O. du Roure, A. Lindner, J. Fluid Mech. 769, 387 (2015)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    C. Brouzet, G. Verhille, P. Le Gal, Phys. Rev. Lett. 112, 074501 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    B. Delmotte, E. Climent, F. Plouraboué, J. Comput. Phys. 286, 14 (2015)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    L.J. Fauci, C.S. Peskin, J. Comput. Phys. 77, 85 (1988)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    V. Eswaran, S. Pope, Comput. Fluids 16, 257 (1988)ADSCrossRefGoogle Scholar
  18. 18.
    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics, Vol. 73 (Oxford University Press, 1988)Google Scholar
  20. 20.
    M.E. Rosti, A.A. Banaei, L. Brandt, A. Mazzino, Phys. Rev. Lett. 121, 044501 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    A. Gay, B. Favier, G. Verhille, EPL 123, 24001 (2018)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mostafa Sulaiman
    • 1
  • Eric Climent
    • 1
    Email author
  • Blaise Delmotte
    • 1
  • Pascal Fede
    • 1
  • Franck Plouraboué
    • 1
  • Gautier Verhille
    • 2
  1. 1.Institut de Mécanique des Fluides de Toulouse (IMFT)Université de Toulouse, CNRS-INPT-UPSToulouseFrance
  2. 2.Aix Marseille Univ, CNRS, Centrale Marseille, IRPHEMarseilleFrance

Personalised recommendations