Advertisement

Agglomeration of wet particles in dense granular flows

  • Thanh Trung Vo
  • Saeid NezamabadiEmail author
  • Patrick Mutabaruka
  • Jean-Yves Delenne
  • Edouard Izard
  • Roland Pellenq
  • Farhang Radjai
Regular Article
  • 36 Downloads

Abstract.

In order to get insight into the wet agglomeration process, we numerically investigate the growth of a single granule inside a dense flow of an initially homogeneous distribution of wet and dry particles. The simulations are performed by means of the discrete element method and the binding liquid is assumed to be transported by the wet particles, which interact via capillary and viscous force laws. The granule size is found to be an exponential function of time, reflecting the conservation of the amount of liquid and the decrease of the number of available wet particles inside the flow during agglomeration. We analyze this behavior in terms of the accretion and erosion rates of wet particles for a range of different values of material parameters such as mean particle size, size polydispersity, friction coefficient and liquid viscosity. In particular, we propose a phase diagram of the granule growth as a function of the mean primary particle diameter and particle size span, which separates the parametric domain in which the granule grows from the domain in which the granule does not survive.

Graphical abstract

Keywords

Flowing Matter: Granular Materials 

Notes

References

  1. 1.
    S.M. Iveson, J.D. Litster, K. Hapgood, B.J. Ennis, Powder Technol. 117, 3 (2001)CrossRefGoogle Scholar
  2. 2.
    S.H. Chien, G. Carmona, L.I. Prochnow, E.R. Austin, J. Environ. Qual. 32, 1911 (2003)CrossRefGoogle Scholar
  3. 3.
    A. Barkouti, E. Rondet, M. Delalonde, T. Ruiz, J. Food Eng. 111, 234 (2012)CrossRefGoogle Scholar
  4. 4.
    E. Rondet, M. Delalonde, T. Ruiz, J.P. Desfoursb, Chem. Eng. J. 164, 376 (2010)CrossRefGoogle Scholar
  5. 5.
    A. Nosrati, J. Addai-Mensah, D.J. Robinson, Hydrometallurgy 125-126, 90 (2012)CrossRefGoogle Scholar
  6. 6.
    K.V. Sastry, P. Dontula, C. Hosten, Powder Technol. 130, 231 (2003)CrossRefGoogle Scholar
  7. 7.
    R. Aguado, S. Roudier, L. Delagado (Editors), Best available techniques (BAT) reference document for iron and steel production (Joint Research Centre of the European Commission, Publications Office of the European Union, Luxembourg, 2013)Google Scholar
  8. 8.
    G.M. Walker, Handb. Powder Technol. 11, 219 (2007) (GranulationCrossRefGoogle Scholar
  9. 9.
    K. Saleh, P. Guigon, Handb. Powder Technol. 11, 323 (2007) (GranulationCrossRefGoogle Scholar
  10. 10.
    P. Suresh, I. Sreedhar, R. Vaidhiswaran, A. Venugopal, Chem. Eng. J. 328, 785815 (2017)CrossRefGoogle Scholar
  11. 11.
    S. Herminghaus, Adv. Phys. 54, 221 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    J. Litster, B. Ennis, The Science and Engineering of Granulation Processes, Vol. 15 (Springer, Netherlands, 2014)Google Scholar
  13. 13.
    C. Liao, S. Hsiau, S. Wen, Adv. Powder Technol. 27, 1265 (2016)CrossRefGoogle Scholar
  14. 14.
    S. Iveson, J. Litster, AIChE J. 44, 1510 (1998)CrossRefGoogle Scholar
  15. 15.
    X. Xiao, Y. Tan, H. Zhang, R. Deng, S. Jiang, Powder Technol. 314, 182 (2017)CrossRefGoogle Scholar
  16. 16.
    B. Alchikh-Sulaiman, M. Alian, F. Ein-Mozaffari, A. Lohi, S.R. Upreti, Particuology 25, 133 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Bouwman, M. Henstra, D. Westerman, J. Chung, Z. Zhang, A. Ingram, J. Seville, H. Frijlink, Int. J. Pharm. 290, 129 (2005)CrossRefGoogle Scholar
  18. 18.
    J. Degreve, J. Baeyens, M.V. de Velden, S.D. Laet, Powder Technol. 163, 188 (2006)CrossRefGoogle Scholar
  19. 19.
    J.D. Osborne, R.P. Sochon, J.J. Cartwright, D.G. Doughty, M.J. Hounslow, A.D. Salman, Chem. Eng. Res. Des. 89, 553 (2011)CrossRefGoogle Scholar
  20. 20.
    S.K. Pawar, F. Henrikson, G. Finotello, J.T. Padding, N.G. Deen, A. Jongsma, F. Innings, J.H. Kuipers, Powder Technol. 300, 157 (2016)CrossRefGoogle Scholar
  21. 21.
    R. Pashminehazar, A. Kharaghani, E. Tsotsas, Powder Technol. 300, 46 (2016)CrossRefGoogle Scholar
  22. 22.
    B.J. Ennis, G. Tardos, R. Pfeffer, Powder Technol. 65, 257 (1991)CrossRefGoogle Scholar
  23. 23.
    F. Stepánek, P. Rajniak, C. Mancinelli, R. Chern, R. Ramachandran, Powder Technol. 189, 376 (2009)CrossRefGoogle Scholar
  24. 24.
    A. Hassanpour, M. Pasha, L. Susana, N. Rahmanian, A.C. Santomaso, M. Ghadiri, Powder Technol. 238, 50 (2013)CrossRefGoogle Scholar
  25. 25.
    N. Rahmanian, A. Naji, M. Ghadiri, Chem. Eng. Res. Des. 89, 512 (2011)CrossRefGoogle Scholar
  26. 26.
    B.J. Ennis, Powder Technol. 88, 203 (1996)CrossRefGoogle Scholar
  27. 27.
    M. Butensky, D. Hyman, Ind. Eng. Chem. Fundam. 10, 212 (1971)CrossRefGoogle Scholar
  28. 28.
    K.E. Ileleji, Y. Li, R.K. Ambrose, P.H. Doane, Powder Technol. 300, 126 (2016)CrossRefGoogle Scholar
  29. 29.
    R. Ramachandran, J.M.H. Poon, C.F. Sanders, T. Glaser, C.D. Immanuel, F.J. Doyle, J.D. Litster, F. Stepanek, F.Y. Wang, I.T. Cameron, Powder Technol. 188, 89 (2008)CrossRefGoogle Scholar
  30. 30.
    J.P. Pan, T.J. Wang, J.J. Yao, Y. Jin, Powder Technol. 162, 50 (2006)CrossRefGoogle Scholar
  31. 31.
    R. Spurling, J. Davidson, D. Scott, Chem. Eng. Res. Des. 79, 51 (2001)CrossRefGoogle Scholar
  32. 32.
    F. Wang, I. Cameron, Powder Technol. 179, 2 (2007)CrossRefGoogle Scholar
  33. 33.
    J.M.N.T. Gray, J. Fluid Mech. 441, 1 (2001)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    C. Thornton, Z. Ning, Powder Technol. 99, 154 (1998)CrossRefGoogle Scholar
  35. 35.
    L.X. Liu, J.D. Litster, S.M. Iveson, B.J. Ennis, AIChE J. 46, 529 (2000)CrossRefGoogle Scholar
  36. 36.
    S. Iveson, J. Beathe, N. Page, Powder Technol. 127, 149 (2002)CrossRefGoogle Scholar
  37. 37.
    M. Ghadiri, A.D. Salman, M. Hounslow, A. Hassanpour, D.W. York, Chem. Eng. Res. Des. 89, 499 (2011)CrossRefGoogle Scholar
  38. 38.
    J. Rojek, S. Nosewicz, M. Mazdziarz, P. Kowalczyk, K. Wawrzyk, D. Lumelskyj, Procedia Eng. 177, 263 (2017)CrossRefGoogle Scholar
  39. 39.
    GDR-MiDi, Eur. Phys. J. E 14, 341 (2004)CrossRefGoogle Scholar
  40. 40.
    K. Kamrin, D.L. Henann, Soft Matter 11, 179 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    L. Amarsid, J.Y. Delenne, P. Mutabaruka, Y. Monerie, F. Perales, F. Radjai, Phys. Rev. E 96, 012901 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    M.A. Behjani, N. Rahmanian, N.F. bt Abdul Ghani, A. Hassanpour, Adv. Powder Technol. 28, 2456 (2017)CrossRefGoogle Scholar
  43. 43.
    I. Govender, Miner. Eng. 92, 168 (2016)CrossRefGoogle Scholar
  44. 44.
    R. Yang, A. Yu, L. McElroy, J. Bao, Powder Technol. 188, 170 (2008)CrossRefGoogle Scholar
  45. 45.
    J. Mellmann, Powder Technol. 118, 251 (2001)CrossRefGoogle Scholar
  46. 46.
    G. Lian, C. Thornton, M. Adams, J. Colloid Interface Sci. 161, 138 (1993)ADSCrossRefGoogle Scholar
  47. 47.
    M. Scheel, R. Seemann, M. Brinkmann, M.D. Michiel, A. Sheppard, S. Herminghaus, J. Phys.: Condens. Matter 20, 494236 (2008)Google Scholar
  48. 48.
    C. Willett, M. Adans, S. Johnson, J. Seville, Langmuir 16, 9396 (2000)CrossRefGoogle Scholar
  49. 49.
    J.Y. Delenne, V. Richefeu, F. Radjai, J. Fluid Mech. 762, R5 (2015)CrossRefGoogle Scholar
  50. 50.
    F. Radjai, F. Dubois, Discrete-Element Modeling of Granular Materials (Wiley-Iste, 2011)Google Scholar
  51. 51.
    V. Richefeu, F. Radjai, M.S.E. Youssoufi, Eur. Phys. J. E 21, 359 (2007)CrossRefGoogle Scholar
  52. 52.
    I. Talu, G.I. Tardos, M.I. Khan, Powder Technol. 110, 59 (2000)CrossRefGoogle Scholar
  53. 53.
    E.L. Chan, K. Washino, G.K. Reynolds, B. Gururajan, M.J. Hounslow, A.D. Salman, Powder Technol. 300, 92 (2016)CrossRefGoogle Scholar
  54. 54.
    P. Lau, M. Kind, Powder Technol. 300, 28 (2016)CrossRefGoogle Scholar
  55. 55.
    S. Sarkar, B. Chaudhuri, Asian J. Pharm. Sci. 13, 220 (2018)CrossRefGoogle Scholar
  56. 56.
    D. Barrasso, A. Tamrakar, R. Ramachandran, Chem. Eng. Sci. 119, 319 (2014)CrossRefGoogle Scholar
  57. 57.
    V. Richefeu, M.S. El Youssoufi, E. Azema, F. Radjai, Powder Technol. 190, 258 (2009)CrossRefGoogle Scholar
  58. 58.
    H. Matuttis, S. Luding, H. Herrmann, Powder Technol. 109, 278 (2000)CrossRefGoogle Scholar
  59. 59.
    C. Thornton, Geotechnique 50, 43 (2000)CrossRefGoogle Scholar
  60. 60.
    F. Radjai, I. Preechawuttipong, R. Peyroux, Cohesive granular texture, in Continuous and Discontinuous Modelling of Cohesive Frictional Materials, edited by P. Vermeer, S. Diebels, W. Ehlers, H. Herrmann, S. Luding, E. Ramm (Springer Verlag, Berlin, 2001) pp. 148--159Google Scholar
  61. 61.
    H.J. Herrmann, S. Luding, Contin. Mech. Thermodyn. 10, 189 (1998)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    D. Shi, J. McCarthy, Powder Technol. 184, 64 (2008)CrossRefGoogle Scholar
  63. 63.
    B. Mohan, C. Kloss, J. Khinast, S. Radl, Powder Technol. 264, 377 (2014)CrossRefGoogle Scholar
  64. 64.
    A. Leonardi, M. Cabrera, F.K. Wittel, R. Kaitna, M. Mendoza, W. Wu, H.J. Herrmann, Phys. Rev. E 92, 052204 (2015)ADSCrossRefGoogle Scholar
  65. 65.
    K. Melnikov, R. Mani, F.K. Wittel, M. Thielmann, H.J. Herrmann, Phys. Rev. E 92, 022206 (2015)ADSCrossRefGoogle Scholar
  66. 66.
    G. Lefebvre, P. Jop, Phys. Rev. E 8, 032205 (2013)ADSCrossRefGoogle Scholar
  67. 67.
    J. Duran, A. Reisinger, P. de Gennes, Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials, Partially Ordered Systems Series (Springer, New York, 1999)Google Scholar
  68. 68.
    V. Richefeu, M. El Youssoufi, F. Radjai, Phys. Rev. E 73, 051304 (2006)ADSCrossRefGoogle Scholar
  69. 69.
    T-Trung. Vo, P. Mutabaruka, J.-Y. Delenne, S. Nezamabadi, F. Radjai, EPJ Web of Conferences 140, 08021 (2017)CrossRefGoogle Scholar
  70. 70.
    J. Schäfer, S. Dippel, D.E. Wolf, J. Phys. I France 6, 5 (1996)CrossRefGoogle Scholar
  71. 71.
    S. Dippel, G.G. Batrouni, D.E. Wolf, Phys. Rev. E 56, 3645 (1997)ADSCrossRefGoogle Scholar
  72. 72.
    S. Luding, Collisions and contacts between two particles, in Physics of Dry Granular Media, NATO Science Series E, Vol. 350, edited by H.J. Herrmann, J.P. Hovi, S. Luding (Springer Netherlands, Dordrecht, 1998) p. 285Google Scholar
  73. 73.
    V. Richefeu, M.S. El Youssoufi, F. Radjaï, in Theoretical and Numerical Unsaturated Soil Mechanics (Springer, 2007) pp. 83--91Google Scholar
  74. 74.
    T-Trung. Vo, P. Mutabaruka, S. Nezamabadi, J.Y. Delenne, E. Izard, R. Pellenq, F. Radjai, Mech. Res. Commun. 92, 1 (2018)CrossRefGoogle Scholar
  75. 75.
    F. Radjai, V. Richefeu, Philos. Trans. R. Soc. A 367, 5123 (2009)ADSCrossRefGoogle Scholar
  76. 76.
    S. Khamseh, J.N. Roux, F.M.C. Chevoir, Phys. Rev. E 92, 022201 (2015)ADSCrossRefGoogle Scholar
  77. 77.
    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Martinus Nijhoff Publishers, 1983)Google Scholar
  78. 78.
    C. Voivret, F. Radjai, J.Y. Delenne, M.S.E. Youssoufi, Phys. Rev. E 76, 021301 (2007)ADSCrossRefGoogle Scholar
  79. 79.
    C. Voivret, F. Radjai, J.Y. Delenne, M.S.E. Youssoufi, Phys. Rev. Lett. 102, 178001 (2009)ADSCrossRefGoogle Scholar
  80. 80.
    P.Y. Liu, R.Y. Yang, A.B. Yu, Granular Matter 15, 427 (2013)CrossRefGoogle Scholar
  81. 81.
    S.A. de Koster, K. Pitt, J.D. Litster, R.M. Smith, Powder Technol. 355, 514 (2019)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Thanh Trung Vo
    • 1
    • 2
  • Saeid Nezamabadi
    • 1
    • 3
    Email author
  • Patrick Mutabaruka
    • 1
  • Jean-Yves Delenne
    • 3
  • Edouard Izard
    • 4
  • Roland Pellenq
    • 5
  • Farhang Radjai
    • 1
  1. 1.LMGC, Université de Montpellier, CNRSMontpellierFrance
  2. 2.Bridge and Road DepartmentDanang Architecture UniversityDa NangVietnam
  3. 3.IATE, UMR1208 INRA - CIRADUniversité de Montpellier - SupAgroMontpellierFrance
  4. 4.ArcelorMittal R&D Maizières, Voie RomaineMaizières-Lès-MetzFrance
  5. 5.(MSE2), UMI 3466 CNRS-MIT, MIT Energy InitiativeCambridgeUSA

Personalised recommendations