Advertisement

Coupled non-equilibrium fluctuations in a polymeric ternary mixture

  • L. García-Fernández Email author
  • P. Fruton
  • H. Bataller
  • J. M. Ortiz de Zárate
  • F. Croccolo
Regular Article
  • 26 Downloads
Part of the following topical collections:
  1. Thermal Non-Equilibrium Phenomena in Soft Matter

Abstract.

We investigate by dynamic shadowgraphy the non-equilibrium fluctuations at the steady state of a thermodiffusion experiment in a polymeric ternary mixture of polystyrene-toluene-n-hexane. The structure function of the refractive index reveals the existence of quite different decay times, thus requiring the analysis of a wide range of correlation times. This is related to the simultaneous presence of three distinct decay modes corresponding to (from fastest to slowest) the relaxation of temperature fluctuations, of the concentration fluctuations of the mixed solvent, and of the concentration fluctuations of the polymer in the binary solvent. An investigation of the decay times at the corresponding diffusive regimes provides a measurement of the thermal diffusivity and the two eigenvalues of the mass diffusion matrix of the ternary mixture. Similar experiments were performed in the past but here, to suppress the confinement effect and obtain a more direct comparison with the theory, a thicker sample is studied. Moreover, also a faster camera is used allowing the experimental observation of faster modes, like the propagative ones. The experimental values of the decay times are eventually compared with those predicted by different available theories. Finally, we present a more complete theoretical model to describe the non-equilibrium fluctuations in the bulk of a ternary mixture at the steady state of a thermodiffusion experiment.

Graphical abstract

Keywords

Topical issue: Thermal Non-Equilibrium Phenomena in Soft Matter 

References

  1. 1.
    F. Montel, J. Bickert, A. Lagisquet, G. Galliero, J. Pet. Sci. Eng. 58, 391 (2007)CrossRefGoogle Scholar
  2. 2.
    H. Guo, Q. Zhou, Z. Wang, Y. Huang, Int. J. Heat Mass Transfer 117, 966 (2018)CrossRefGoogle Scholar
  3. 3.
    J.M. Ortiz de Zárate, J.V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier, Amsterdam, 2006)Google Scholar
  4. 4.
    F. Croccolo, J.M. Ortiz de Zárate, J.V. Sengers, Eur. Phys. J. E 39, 125 (2016)CrossRefGoogle Scholar
  5. 5.
    A. Vailati, M. Giglio, Nature 390, 262 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    F. Croccolo, H. Bataller, F. Scheffold, J. Chem. Phys. 137, 234202 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    C. Giraudet, H. Bataller, F. Croccolo, Eur. Phys. J. E 37, 107 (2014)CrossRefGoogle Scholar
  8. 8.
    C. Ludwig, Sitzungsber. Österr. Akad. Wiss., Math.-Nat. Kl. 20, 539 (1856)Google Scholar
  9. 9.
    C. Soret, Arch. Sci. Phys. Nat. Geneve 2, 48 (1879)Google Scholar
  10. 10.
    W. Köhler, K.I. Morozov, J. Non-Equilib. Thermodyn. 41, 151 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    F. Croccolo, D. Brogioli, Appl. Opt. 50, 3419 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, D.S. Cannell, Phys. Rev. E 76, 041112 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    S.P. Trainoff, D.S. Cannell, Phys. Fluids 14, 1340 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    H. Bataller, T. Triller, B. Pur, W. Köhler, J.M. Ortiz de Zárate, F. Croccolo, Eur. Phys. J. E 40, 35 (2017)CrossRefGoogle Scholar
  15. 15.
    I. Lizarraga, C. Giraudet, F. Croccolo, M.M. Bou-Ali, H. Bataller, Micrograv. Sci. Technol. 28, 545 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    J.K. Platten, M.M. Bou-Ali, P. Costeseque, J.F. Dutrieux, W. Köhler, C. Leppla, S. Wiegand, G. Wittko, Philos. Mag. 83, 1965 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    H. Bataller, C. Giraudet, F. Croccolo, J.M. Ortiz de Zárate, Micrograv. Sci. Technol. 28, 611 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    M.M. Bou-Ali, A. Ahadi, D. Alonso de Mezquia, Q. Galand, M. Gebhardt, O. Khlybov, W. Köhler, M. Larranaga, J.C. Legros, T. Lyubimova, A. Mialdun, I. Ryzhkov, M.Z. Saghir, V. Shevtsova, S. Van Vaerenbergh, Eur. Phys. J. E 38, 30 (2015)CrossRefGoogle Scholar
  19. 19.
    A. Ahadi, S.V. Varenbergh, M.Z. Saghir, J. Chem. Phys. 138, 204201 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    A. Mialdun, V. Shevtsova, J. Chem. Phys. 143, 224902 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    A. Mialdun, I. Ryzhkov, O. Khlybov, T. Lyubimova, V. Shevtsova, J. Chem. Phys. 148, 044506 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    T. Triller, H. Bataller, M.M. Bou-Ali, M. Braibanti, F. Croccolo, J.M. Ezquerro, Q. Galand, J. Gavaldà, E. Lapeira, A. Laverón-Simavilla, T. Lyubimova, A. Mialdun, J.M. Ortiz de Zárate, J. Rodríguez, X. Ruiz, I.I. Ryzhkov, V. Shevtsova, S.V. Vaerenbergh, W. Köhler, Micrograv. Sci. Technol. 30, 295 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    A. Mialdun, H. Bataller, M.M. Bou-Ali, M. Braibanti, F. Croccolo, A. Errarte, J.M. Ezquerro, Y. Gaponenko, L. García-Fernández, J.J. Fernández, J. Rodríguez, V. Shevtsova, Eur. Phys. J. E 42, 87 (2019)CrossRefGoogle Scholar
  24. 24.
    G. Galliero, H. Bataller, J.P. Bazile, J. Diaz, F. Croccolo, H. Hoang, R. Vermorel, P.A. Artola, B. Rousseau, V. Vesovic, M.M. Bou-Ali, J.M. Ortiz de Zárate, S. Xu, K. Zhang, F. Montel, A. Verga, O. Minster, npj Microgravity 3, 20 (2017)CrossRefGoogle Scholar
  25. 25.
    J.C. Legros, S. Van Vaerenbergh, Y. Decroly, P. Colinet, F. Montel, Entropie 184/185, 38 (1994)Google Scholar
  26. 26.
    S. Van Vaerenbergh, S. Srinivasan, M.Z. Saghir, J. Chem. Phys. 131, 114505 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    G. Galliero, H. Bataller, F. Croccolo, R. Vermorel, P.-A. Artola, B. Rousseau, V. Vesovic, M.M. Bou-Ali, J.M. Ortiz de Zárate, S. Xu, K. Zhang, F. Montel, Micrograv. Sci. Technol. 28, 79 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    P. Baaske, H. Bataller, M. Braibanti, M. Carpineti, R. Cerbino, F. Croccolo, A. Donev, W. Köhler, J.M. Ortiz de Zárate, A. Vailati, Eur. Phys. J. E 39, 119 (2016)CrossRefGoogle Scholar
  29. 29.
    M. Braibanti, P.-A. Artola, P. Baaske, H. Bataller, J.-P. Bazile, M.M. Bou-Ali, D.S. Cannell, M. Carpineti, R. Cerbino, F. Croccolo, J. Diaz, A. Donev, A. Errarte, J.M. Ezquerro, Q. Galand, G. Galliero, Y. Gaponenko, L. García-Fernández, J. Gavaldá, F. Giavazzi, M. Giglio, H. Hoang, W. Köhler, E. Lapeira, A. Laverón-Simavilla, I. Lizarraga, T. Lyubimova, S. Mazzoni, A. Mialdun, O. Minster, F. Montel, J.M. Ortiz de Zárate, J. Rodríguez, B. Rousseau, X. Ruiz, I.I. Ryzhkov, M. Schraml, V. Shevtsova, C.J. Takacs, T. Triller, S. Van Vaerenbergh, A. Vailati, A. Verga, R. Vermorel, V. Vesovic, V. Yasnou, S. Xu, D. Zapf, K. Zhang, Eur. Phys. J. E 42, 86 (2019)CrossRefGoogle Scholar
  30. 30.
    P. Blanco, M.M. Bou-Ali, J.K. Platten, D.A. de Mezquia, J.A. Madariaga, C. Santamaria, J. Chem. Phys. 132, 114506 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    A. Leahy-Dios, M.M. Bou-Ali, J.K. Platten, A. Firoozabadi, J. Chem. Phys. 122, 234502 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    A. Königer, H. Wunderlich, W. Köhler, J. Chem. Phys. 132, 174506 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    A. Ahadi, M. Ziad Saghir, Eur. Phys. J. E 38, 25 (2015)CrossRefGoogle Scholar
  34. 34.
    A. Mialdun, J.C. Legros, V. Yasnou, V. Sechenyh, V. Shevtsova, Eur. Phys. J. E 38, 27 (2015)CrossRefGoogle Scholar
  35. 35.
    M. Gebhardt, W. Kohler, Eur. Phys. J. E 38, 24 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    Q. Galand, S. Van Vaerenbergh, Eur. Phys. J. E 38, 26 (2015)CrossRefGoogle Scholar
  37. 37.
    O.A. Khlybov, Ryzhkov II, T.P. Lyubimova, Eur. Phys. J. E 38, 29 (2015)CrossRefGoogle Scholar
  38. 38.
    M. Larranaga, M.M. Bou-Ali, D.A. de Mezquia, D.A. Rees, J.A. Madariaga, C. Santamaria, J.K. Platten, Eur. Phys. J. E 38, 28 (2015)CrossRefGoogle Scholar
  39. 39.
    J.M. Ortiz de Zárate, C. Giraudet, H. Bataller, F. Croccolo, Eur. Phys. J. E 37, 77 (2014)CrossRefGoogle Scholar
  40. 40.
    P. Martínez Pancorbo, J.M. Ortiz de Zárate, H. Bataller, F. Croccolo, Eur. Phys. J. E 40, 22 (2017)CrossRefGoogle Scholar
  41. 41.
    C. Giraudet, H. Bataller, Y. Sun, A. Donev, J.M. Ortiz de Zárate, F. Croccolo, EPL 111, 60013 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    C. Giraudet, H. Bataller, Y. Sun, A. Donev, J.M. Ortiz de Zárate, F. Croccolo, Eur. Phys. J. E 39, 120 (2016)CrossRefGoogle Scholar
  43. 43.
    F. Croccolo, L. García-Fernández, H. Bataller, A. Vailati, J.M. Ortiz de Zárate, Phys. Rev. E 99, 012602 (2019)ADSCrossRefGoogle Scholar
  44. 44.
    D. Alonso de Mezquia, Z. Wang, E. Lapeira, M. Klein, S. Wiegand, M.M. Bou-Ali, Eur. Phys. J. E 37, 106 (2014)CrossRefGoogle Scholar
  45. 45.
    J. Rauch, W. Köhler, J. Chem. Phys. 119, 11977 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    K.J. Zhang, M.E. Briggs, R.W. Gammon, J.V. Sengers, J. Chem. Phys. 104, 6881 (1996)ADSCrossRefGoogle Scholar
  47. 47.
    D. Brogioli, A. Vailati, M. Giglio, Phys. Rev. E 61, 1 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, D.S. Cannell, Appl. Opt. 45, 2166 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    G. Cerchiari, F. Croccolo, F. Cardinaux, F. Scheffold, Rev. Sci. Instrum. 83, 106101 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    L. Cipelletti, D.A. Weitz, Rev. Sci. Instrum. 70, 3214 (1999)ADSCrossRefGoogle Scholar
  51. 51.
    J.M. Ortiz de Zárate, Eur. Phys. J. E 42, 43 (2019)CrossRefGoogle Scholar
  52. 52.
    J.M. Ortiz de Zárate, J.L. Hita, J.V. Sengers, C.R. Mec. 341, 399 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    A. Bardow, Fluid Phase Equilib. 251, 121 (2007)CrossRefGoogle Scholar
  54. 54.
    P.N. Segre, R. Schmitz, J.V. Sengers, Physica A 195, 31 (1993)ADSCrossRefGoogle Scholar
  55. 55.
    F. Croccolo, C. Giraudet, H. Bataller, R. Cerbino, A. Vailati, Micrograv. Sci. Technol. 28, 467 (2016)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • L. García-Fernández
    • 1
    • 2
    Email author
  • P. Fruton
    • 1
  • H. Bataller
    • 1
  • J. M. Ortiz de Zárate
    • 3
  • F. Croccolo
    • 1
  1. 1.Laboratoire des Fluides Complexes et leurs Réservoirs - IPRAUMR5150, E2S-Univ Pau & Pays Adour/CNRS/TotalAngletFrance
  2. 2.Centre National d’Études Spatiales (CNES)ParisFrance
  3. 3.Departamento de Estructura de la Materia, Física Térmica y Electrónica, Facultad de Ciencias FísicasUniversidad Complutense de MadridMadridSpain

Personalised recommendations