Advertisement

Deformation hysteresis of a water nano-droplet in an electric field

  • Fenhong Song
  • Dapeng Ju
  • Jing Fan
  • Qicheng Chen
  • Qingzhen YangEmail author
Regular Article
  • 26 Downloads

Abstract.

Electric field is an effective method to manipulate droplets in micro/nano-scale, and various physical phenomena have been found due to the interaction of electric field and fluid flow. In this study, we developed a molecular dynamic model to investigate the deforming behavior of a nano-droplet in a uniform electric field. The nano-droplet was initially confined between two plates and then wetted on the lower plate (i.e., substrate) until an equilibrium state, after that a uniform electric field in vertical direction was imposed to the system. Due to the electrical force, the droplet started to deform until achieving a new equilibrium state and the dynamic process is recorded. By comparing the equilibrium state under different electric field strength, we found a deformation hysteresis phenomenon, i.e., different deformations were obtained when increasing and decreasing the electric field. To be specific, a large electric field (E = 0.57 V ·nm^-1) is needed to stretch the nano-droplet to touch the upper plate, while a relatively lower field (E = 0.40 V ·nm^-1) is adequate to keep it contacting with the plate. Accompanied by the deformation hysteresis, a distribution hysteresis of the average dipole orientations of water molecules in the nano-droplet is also found. Such a hysteresis phenomenon is caused by the electrohydrodynamic interactions between droplet and plates, and the findings of this study could enhance our understanding of droplet deformation in an electric field.

Graphical abstract

Keywords

Flowing Matter: Interfacial phenomena 

References

  1. 1.
    B.K. Ku, S.S. Kim, J. Electrostat. 57, 109 (2003)CrossRefGoogle Scholar
  2. 2.
    M. Barlettaa, A. Gisario, Prog. Org. Coat. 64, 339 (2009)CrossRefGoogle Scholar
  3. 3.
    B. Gao, Q. Yang, X. Zhao, G. Jin, Y. Ma, F. Xu, Trends Biotechnol. 34, 746 (2016)CrossRefGoogle Scholar
  4. 4.
    H. You, A.J. Steckl, Appl. Phys. Lett. 97, 023514 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    X. Chen, X. Li, J. Shao, N. An, H. Tian, C. Wang, T. Han, L. Wang, B. Lu, Small 13, 1604245 (2017)CrossRefGoogle Scholar
  6. 6.
    E. Schaffer, T.T. Albrecht, T.P. Russell, U. Steiner, Lett. Nat. 403, 874 (2000)CrossRefGoogle Scholar
  7. 7.
    X.G. Liang, W. Zhang, M.T. Li, Q.F. Xia, W. Wu, H.X. Ge, X.Y. Huang, S.Y. Chou, Nano Lett. 5, 527 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    H. Tian, J. Shao, X. Chen, L. Wang, Y. Ding, J. Micromech. Microeng. 27, 025008 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    R. Ruiter, J. Ruiter, H.B. Eral, C. Semprebon, M. Brinkmann, F. Mugele, Langmuir 28, 13300 (2012)CrossRefGoogle Scholar
  10. 10.
    C.D. Daub, D. Bratko, K. Leung, A. Luzar, J. Phys. Chem. C 111, 505 (2007)CrossRefGoogle Scholar
  11. 11.
    S.R. Mahmoudi, K. Adamiak, G.S. Peter Castle, Proc. R. Soc. A 467, 3257 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    C. Decamps, J.D. Coninck, Langmuir 16, 10150 (2000)CrossRefGoogle Scholar
  13. 13.
    F. Mugele, J.C. Baret, J. Phys.: Condens. Matter 17, R705 (2005)Google Scholar
  14. 14.
    F. Mugele, Soft Matter 5, 3377 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    R. Zhao, Q.C. Liu, P. Wang, Z.C. Liang, Chin. Phys. B 24, 086801 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    W.C. Nelson, P. Sen, C.J. Kim, Langmuir 27, 10319 (2011)CrossRefGoogle Scholar
  17. 17.
    E. Bormashenko, R. Pogreb, Y. Bormashenko, H. Aharoni, E. Shulzinger, R. Grinev, D. Rozenman, Z. Rozenman, RSC Adv. 5, 32491 (2011)CrossRefGoogle Scholar
  18. 18.
    Z. Brabcova, G. McHale, G.G. Wells, C.V. Brown, M.I. Newton, Appl. Phys. Lett. 110, 121603 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    C.D. Daub, D. Bratko, A. Luzar, Top Curr. Chem. 307, 155 (2012)CrossRefGoogle Scholar
  20. 20.
    F. Song, B. Li, C. Liu, Langmuir 29, 4266 (2013)CrossRefGoogle Scholar
  21. 21.
    T. Yen, Mol. Simul. 38, 509 (2012)CrossRefGoogle Scholar
  22. 22.
    F.H. Song, B.Q. Li, Y. Li, Phys. Chem. Chem. Phys. 17, 5543 (2015)CrossRefGoogle Scholar
  23. 23.
    Q. Li, Y. Xiao, X. Shi, S. Song, Nanomaterials 7, 265 (2017)CrossRefGoogle Scholar
  24. 24.
    D. Niu, G. Tang, Int. J. Heat Mass Transfer. 79, 647 (2014)CrossRefGoogle Scholar
  25. 25.
    H. Ren, L. Zhang, X. Li, Y. Li, W. Wu, H. Li, Phys. Chem. Chem. Phys. 17, 23460 (2015)CrossRefGoogle Scholar
  26. 26.
    J. Wang, S. Chen, D. Chen, Phys. Chem. Chem. Phys. 17, 30533 (2015)CrossRefGoogle Scholar
  27. 27.
    F. Song, L. Ma, J. Fan, Q. Chen, L. Zhang, B. Li, Nanomaterials 8, 340 (2018)CrossRefGoogle Scholar
  28. 28.
    F. Song, L. Ma, J. Fan, Q. Chen, G. Lei, B. Li, Phys. Chem. Chem. Phys. 20, 11987 (2018)CrossRefGoogle Scholar
  29. 29.
    D. Zong, Z. Yang, Y. Duan, Appl. Therm. Eng. 122, 71 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    M. Kargara, A. Lohrasebi, Phys. Chem. Chem. Phys. 19, 26833 (2017)CrossRefGoogle Scholar
  31. 31.
    M.P. Allen, D.J. Tildesley, J.R. Banavar, Computer Simulation of Liquids (Oxford University Press, New York, USA, 1989)Google Scholar
  32. 32.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  33. 33.
    P.H. Hünenberger, Adv. Polym. Sci. 173, 105 (2005)CrossRefGoogle Scholar
  34. 34.
    J.S. Eow, M. Ghadiri, A. Sharif, Colloids Surf. A: Physicochem. Eng. Asp. 225, 193 (2003)CrossRefGoogle Scholar
  35. 35.
    J.S. Eow, M. Ghadiri, A. Sharif, J. Electrostat. 51, 463 (2001)CrossRefGoogle Scholar
  36. 36.
    W. Hong, X. Ye, R. Xue, J. Disper. Sci. Technol. 39, 26 (2017)CrossRefGoogle Scholar
  37. 37.
    Q. Yang, B. Li, H. Tian, X. Li, J. Shao, X. Chen, F. Xu, ACS Appl. Mater. Interfaces 8, 17668 (2016)CrossRefGoogle Scholar
  38. 38.
    J.D. Sherwood, J. Fluid Mech. 188, 133 (1988)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fenhong Song
    • 1
  • Dapeng Ju
    • 1
  • Jing Fan
    • 1
  • Qicheng Chen
    • 1
  • Qingzhen Yang
    • 2
    • 3
    Email author
  1. 1.School of Energy and Power EngineeringNortheast Electric Power University, JilinJilinP.R. China
  2. 2.The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi’an Jiaotong UniversityXi’an, ShaanxiP.R. China
  3. 3.Bioinspired Engineering and Biomechanics Center (BEBC)Xi’an Jiaotong UniversityXi’an, ShaanxiP.R. China

Personalised recommendations