Statistical properties of thermally expandable particles in soft-turbulence Rayleigh-Bénard convection

Abstract.

The dynamics of inertial particles in Rayleigh-Bénard convection, where both particles and fluid exhibit thermal expansion, is studied using direct numerical simulations (DNS) in the soft-turbulence regime. We consider the effect of particles with a thermal expansion coefficient larger than that of the fluid, causing particles to become lighter than the fluid near the hot bottom plate and heavier than the fluid near the cold top plate. Because of the opposite directions of the net Archimedes’ force on particles and fluid, particles deposited at the plate now experience a relative force towards the bulk. The characteristic time for this motion towards the bulk to happen, quantified as the time particles spend inside the thermal boundary layers (BLs) at the plates, is shown to depend on the thermal response time, \( \tau_{T}\), and the thermal expansion coefficient of particles relative to that of the fluid, \( K = \alpha_{p}/\alpha_{f}\). In particular, the residence time is constant for small thermal response times, \( \tau_{T} \lesssim 1\), and increasing with \( \tau_{T}\) for larger thermal response times, \( \tau_{T} \gtrsim 1\). Also, the thermal BL residence time is increasing with decreasing K. A one-dimensional (1D) model is developed, where particles experience thermal inertia and their motion is purely dependent on the buoyancy force. Although the values do not match one-to-one, this highly simplified 1D model does predict a regime of a constant thermal BL residence time for smaller thermal response times and a regime of increasing residence time with \( \tau_{T}\) for larger response times, thus explaining the trends in the DNS data well.

Graphical abstract

References

  1. 1

    A.S. Ackerman, M.P. Kirkpatrick, D.E. Stevens, O.B. Toon, Nature 432, 1014 (2004)

    ADS  Article  Google Scholar 

  2. 2

    R.A. Shaw, Annu. Rev. Fluid Mech. 35, 183 (2003)

    ADS  Article  Google Scholar 

  3. 3

    A.B. Kostinski, R.A. Shaw, Bull. Am. Meteorol. Soc. 86, 235 (2005)

    ADS  Article  Google Scholar 

  4. 4

    R. Reigada, R.M. Hillary, M.A. Bees, J.M. Sancho, F. Sagues, Proc. Biol. Sci. 270, 875 (2003)

    Article  Google Scholar 

  5. 5

    K.D. Squires, H.Y., Deep Sea Res. Part I: Oceanogr. Res. Pap. 42, 1989 (1995)

    ADS  Article  Google Scholar 

  6. 6

    G. Faeth, Prog. Energy Combust. Sci. 13, 293 (1987)

    ADS  Article  Google Scholar 

  7. 7

    S.L. Post, J. Abraham, Int. J. Multiphase Flow 28, 997 (2002)

    Article  Google Scholar 

  8. 8

    M. Okada, T. Suzuki, Int. J. Heat Mass Transfer 40, 3201 (1997)

    Article  Google Scholar 

  9. 9

    J.G.M. Kuerten, A.W. Vreman, Int. J. Multiphase Flow 87, 66 (2016)

    MathSciNet  Article  Google Scholar 

  10. 10

    E. Calzavarini, M. Cencini, D. Lohse, F. Toschi, Phys. Rev. Lett. 101, 084504 (2008)

    ADS  Article  Google Scholar 

  11. 11

    S. Douady, Y. Couder, M.E. Brachet, Phys. Rev. Lett. 67, 983 (1991)

    ADS  Article  Google Scholar 

  12. 12

    E.W. Saw, R.A. Shaw, S. Ayyalasomayajula, P.Y. Chuang, A. Gylfason, Phys. Rev. Lett. 100, 214501 (2008)

    ADS  Article  Google Scholar 

  13. 13

    R. Lakkaraju, L.E. Schmidt, P. Oresta, F. Toschi, R. Verzicco, D. Lohse, A. Prosperetti, Phys. Rev. E 84, 036312 (2011)

    ADS  Article  Google Scholar 

  14. 14

    R. Lakkaraju, R.J.A.M. Stevens, P. Oresta, R. Verzicco, D. Lohse, A. Prosperetti, Proc. Natl. Acad. Sci. U.S.A. 110, 9237 (2013)

    ADS  Article  Google Scholar 

  15. 15

    P. Oresta, R. Verzicco, D. Lohse, A. Prosperetti, Phys. Rev. E 80, 026304 (2009)

    ADS  Article  Google Scholar 

  16. 16

    Z. Wang, V. Mathai, C. Sun, Nat. Commun. 10, 3333 (2019)

    ADS  Article  Google Scholar 

  17. 17

    G. Ahlers, S. Grossmann, D. Lohse, Rev. Mod. Phys. 81, 503 (2009)

    ADS  Article  Google Scholar 

  18. 18

    F. Heslot, B. Castaing, A. Libchaber, Phys. Rev. A 36, 5870 (1987)

    ADS  Article  Google Scholar 

  19. 19

    V. Lavezzo, H. Clercx, F. Toschi, J. Phys.: Conf. Ser. 318, 052011 (2011)

    Google Scholar 

  20. 20

    P. Joshi, H. Rajaei, R.P.J. Kunnen, H.J.H. Clercx, Phys. Rev. Fluids 1, 084301 (2016)

    ADS  Article  Google Scholar 

  21. 21

    B. Arcen, A. Taniere, M. Khalij, Int. J. Heat Mass Transfer 55, 6519 (2012)

    Article  Google Scholar 

  22. 22

    J.G.M. Kuerten, C.W.M. van der Geld, B.J. Geurts, Phys. Fluids 23, 123301 (2011)

    ADS  Article  Google Scholar 

  23. 23

    S. Wetchagarun, J.J. Riley, Phys. Fluids 22, 063301 (2010)

    ADS  Article  Google Scholar 

  24. 24

    B. Lessani, M.H. Nakhaei, Int. J. Heat Mass Transfer 67, 974 (2013)

    Article  Google Scholar 

  25. 25

    M.H. Nakhaei, B. Lessani, Int. J. Heat Mass Transfer 106, 1014 (2017)

    Article  Google Scholar 

  26. 26

    P. Oresta, A. Prosperetti, Phys. Rev. E 87, 063014 (2013)

    ADS  Article  Google Scholar 

  27. 27

    S. Engelmann, Advanced Thermoforming (John Wiley & Sons, New Jersey, 2012)

  28. 28

    R. Verzicco, R. Camussi, J. Fluid Mech. 477, 19 (2003)

    ADS  Article  Google Scholar 

  29. 29

    E.P. van der Poel, R. Ostilla-Mónico, J. Donners, R. Verzicco, Comput. Fluids 116, 10 (2015)

    MathSciNet  Article  Google Scholar 

  30. 30

    E.E. Michaelides, Z. Feng, Int. J. Heat Mass Transfer 37, 2069 (1994)

    Article  Google Scholar 

  31. 31

    M.R. Maxey, J.J. Riley, Phys. Fluids 26, 883 (1983)

    ADS  Article  Google Scholar 

  32. 32

    V. Armenio, V. Fiorotto, Phys. Fluids 13, 2437 (2001)

    ADS  Article  Google Scholar 

  33. 33

    W.E. Ranz, W.R. Marshall, Chem. Eng. Prog. 48, 173 (1952)

    Google Scholar 

  34. 34

    M. van Aartrijk, H.J.H. Clercx, Phys. Fluids 22, 013301 (2010)

    ADS  Article  Google Scholar 

  35. 35

    M. van Aartrijk, H.J.H. Clercx, J. Hydro Environ. Res. 4, 103 (2010)

    Article  Google Scholar 

  36. 36

    R.M. Kerr, J. Fluid Mech. 310, 139 (1996)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Federico Toschi.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alards, K.M.J., Kunnen, R.P.J., Clercx, H.J.H. et al. Statistical properties of thermally expandable particles in soft-turbulence Rayleigh-Bénard convection. Eur. Phys. J. E 42, 126 (2019). https://doi.org/10.1140/epje/i2019-11882-y

Download citation

Keywords

  • Topical issue: Flowing Matter, Problems and Applications