Advertisement

Oblate to prolate transition of a vesicle in shear flow

  • Maximilien Degonville
  • Gwenn Boedec
  • Marc LeonettiEmail author
Regular Article

Abstract.

Vesicles are micrometric soft particles whose membrane is a two-dimensional incompressible fluid governed by bending resistance leading to a zoology of shapes. The dynamics of deflated vesicles in shear flow with a bottom wall, a first minimal configuration to consider confined vesicles, is investigated using numerical simulations. Coexistence under flow of oblate (metastable) and prolate (stable) shapes is studied in details. In particular, we discuss the boundaries of the region of coexistence in the (v, Ca -plane where v is the reduced volume of the vesicle and Ca the Capillary number. We characterize the transition from oblate to prolate and analyse the divergence of the transition time near the critical capillary number. We then analyse the lift dynamics of an oblate vesicle in the weak flow regime.

Graphical abstract

Keywords

Living systems: Biomimetic Systems 

References

  1. 1.
    D. Barthes-Biesel, Annu. Rev. Fluid Mech. 48, 25 (2016)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    R. Dimova, U. Seifert, B. Pouligny, S. Förster, H.G. Döbereiner, Eur. Phys. J. E 7, 241 (2002)Google Scholar
  3. 3.
    D.E. Disher, F. Ahmed, Annu. Rev. Biomed. Eng. 8, 323 (2006)CrossRefGoogle Scholar
  4. 4.
    F. Meng, Z. Zhong, J. Feijen, Biomacromolecules 10, 323 (2006)Google Scholar
  5. 5.
    V. Kantsler, V. Steinberg, Phys. Rev. Lett. 95, 258101 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    C. De Loubens, J. Deschamps, F. Edwards-Lévy, M. Leonetti, J. Fluid Mech. 789, 750 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    J. Deschamps, V. Kantsler, V. Steinberg, Phys. Rev. Lett. 102, 118105 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    H.L. Goldsmith, S.G. Mason, J. Colloid Interface Sci. 17, 448 (1962)CrossRefGoogle Scholar
  9. 9.
    J.R. Smart, D.T. Leighton Jr., Phys. Fluids A 3, 21 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    P. Olla, J. Phys. II 7, 1533 (1997)Google Scholar
  11. 11.
    P.M. Vlahovska, R.S. Garcia, Phys. Rev. E 75, 016313 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    A. farutin, C. Misbah, Phys. Rev. Lett. 110, 108104 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    H. Zhao, A.P. Spann, E.S.G. Shaqfeh, Phys. Fluids 23, 121901 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    N. Callens, C. Minetti, G. Coupier, M.-A. Mader, F. Dubois, C. Misbah, T. Podgorski, EPL 83, 24002 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    I. Cantat, C. Misbah, Phys. Rev. Lett. 83, 880 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    U. Seifert, Phys. Rev. Lett. 83, 876 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    S. Sukumaran, U. Seifert, Phys. Rev. E 64, 011916 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    B. Lorz, R. Simson, J. Nardi, E. Sackmann, Europhys. Lett. 51, 468 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    M. Abkarian, C. Lartigue, A. Viallat, Phys. Rev. Lett. 88, 068103 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    M. Abkarian, A. Viallat, Biophys. J. 89, 1055 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    S. Meßlinger, B. Schmidt, H. Noguchi, G. Gompper, Phys. Rev. E 80, 011901 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    M. Kraus, U. Seifert, R. Lipowsky, Europhys. Lett. 32, 431 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    U. Seifert, K. Berndl, R. Lipowsky, Phys. Rev. A 44, 1182 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    U. Seifert, Adv. Phys. 46, 13 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    A.P. Spann, H. Zhao, E.S.G. Shaqfeh, Phys. Fluids 26, 031902 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    H. Noguchi, G. Gompper, Phys. Rev. Lett. 93, 258102 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    H. Noguchi, G. Gompper, Phys. Rev. E 72, 011901 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    G. Boedec, M. Leonetti, M. Jaeger, J. Comput. Phys. 230, 1020 (2011)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    H. Zhao, E.S.G. Shaqfeh, J. Fluid Mech. 674, 578 (2011)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    T. Biben, A. Farutin, C. Misbah, Phys. Rev. E 83, 031921 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    J. Blake, Math. Proc. Cambridge Philos. Soc. 70, 303 (1971)ADSCrossRefGoogle Scholar
  32. 32.
    C. De Loubens, J. Deschamps, G. Boedec, M. Leonetti, J. Fluid Mech. 767, R3 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    J. Gounley, G. Boedec, M. Jaeger, M. Leonetti, J. Fluid Mech. 791, 464 (2016)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    G. Boedec, M. Leonetti, M. Jaeger, J. Comput. Phys. 342, 117 (2017)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    M. Jarić, U. Seifert, W. Wintz, M. Wortis, Phys. Rev. E 52, 6623 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    A. Farutin, C. Misbah, Phys. Rev. Lett. 109, 248106 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Maximilien Degonville
    • 1
  • Gwenn Boedec
    • 1
  • Marc Leonetti
    • 2
    Email author
  1. 1.Aix Marseille UnivCNRS, Centrale MarseilleMarseilleFrance
  2. 2.Univ. Grenoble AlpesCNRS, Grenoble INP, LRPGrenobleFrance

Personalised recommendations