Advertisement

Thermodiffusion and hydrolysis of 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)

  • Doreen NietherEmail author
  • Simone Wiegand
Regular Article
Part of the following topical collections:
  1. Thermal Non-Equilibrium Phenomena in Soft Matter

Abstract.

Presently, microfluidic traps are designed mimicking the environment of hydrothermal pores, where a combination of thermophoresis and convection leads to accumulation so that high concentrations of organic matter can be reached. Such a setup is interesting in the context of the origin of life to observe accumulation and possible further synthesis of small organic molecules or prebiotic molecules such as nucleotides or RNA-fragments, but could also be used to replicate DNA-strands. The addition of coupling agents for the activation of carboxyl or phosphate groups such as 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and EDC-hydrochloride (EDC-HCl) is necessary in order to speed up the process. This work characterizes the thermophoretic properties of EDC and EDC-HCl needed to optimize the design of the traps. At p H 4–6 spontaneous hydrolysis of EDC is observed, which also leads to a neutralisation of the p H. In order to evaluate the thermodiffusion measurements the rate constants were measured at 23 and \(50 {}^{\circ}\) C and the activation energy of the hydrolysis calculated.

Graphical abstract

Keywords

Topical issue: Thermal Non-Equilibrium Phenomena in Soft Matter 

Supplementary material

10189_2019_11880_MOESM1_ESM.pdf (198 kb)
Supplementary material

References

  1. 1.
    F.S. Gaeta, U. Bencivenga, P. Canciglia, S. Rossi, D.G. Mita, Cell Biophys. 10, 103 (1987)CrossRefGoogle Scholar
  2. 2.
    P. Baaske, F.M. Weinert, S. Duhr, K.H. Lemke, M.J. Russell, D. Braun, Proc. Natl. Acad. Sci. U.S.A. 104, 9346 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Doreen Niether, Dzmitry Afanasenkau, Jan K.G. Dhont, Simone Wiegand, Proc. Natl. Acad. Sci. U.S.A. 113, 4272 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Evgeniia Edeleva, Annalena Salditt, Julian Dominik Stamp, Philipp Schwintek, Job Boekhoven, Dieter Braun, Chem. Sci. 10, 5807 (2019)CrossRefGoogle Scholar
  5. 5.
    Marilyne Sosson, Daniel Pfeffer, Clemens Richert, Nucl. Acids Res. 47, 3836 (2019)CrossRefGoogle Scholar
  6. 6.
    Helmut Griesser, Peter Tremmel, Eric Kervio, Camilla Pfeffer, Ulrich E. Steiner, Clemens Richert, Angew. Chem. Int. Ed. 56, 1219 (2017)CrossRefGoogle Scholar
  7. 7.
    Mario Jauker, Helmut Griesser, Clemens Richert, Angew. Chem. Int. Ed. 54, 14564 (2015)CrossRefGoogle Scholar
  8. 8.
    C.B. Mast, D. Braun, Phys. Rev. Lett. 104, 188102 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    N. Wrobel, M. Schinkinger, V.M. Mirsky, Anal. Biochem. 305, 135 (2002)CrossRefGoogle Scholar
  10. 10.
    M.A. Gilles, A.Q. Hudson, C.L. Borders, Anal. Biochem. 184, 244 (1990)CrossRefGoogle Scholar
  11. 11.
    A. Williams, I.T. Ibrahim, J. Am. Chem. Soc. 103, 7090 (1981)CrossRefGoogle Scholar
  12. 12.
    Michael Lewis, Rainer Glaser, Chem. Eur. J. 8, 1934 (2002)CrossRefGoogle Scholar
  13. 13.
    D. Vigolo, S. Buzzaccaro, R. Piazza, Langmuir 26, 7792 (2010)CrossRefGoogle Scholar
  14. 14.
    Silvia Di Lecce, Fernando Bresme, J. Phys. Chem. B 122, 1662 (2018)CrossRefGoogle Scholar
  15. 15.
    W. Köhler, K.I. Morozov, J. Non-Equilib. Thermodyn. 41, 151 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    T. Triller, D. Sommermann, M. Schraml, F. Sommer, E. Lapeira, M.M. Bou-Ali, W. Köhler, Eur. Phys. J. E 42, 27 (2019)CrossRefGoogle Scholar
  17. 17.
    S. Wiegand, H. Ning, H. Kriegs, J. Phys. Chem. B 111, 14169 (2007)CrossRefGoogle Scholar
  18. 18.
    A. Becker, W. Köhler, B. Müller, Ber. Bunsen. Phys. Chem. 99, 600 (1995)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.ICS-3 Soft Condensed MatterForschungszentrum Jülich GmbHJülichGermany

Personalised recommendations