Solution filtering affects the glassy dynamics of spincoated thin films of poly(4-chlorostyrene)

  • Alice Debot
  • Pragya Tripathi
  • Simone NapolitanoEmail author
Regular Article
Part of the following topical collections:
  1. Dielectric Spectroscopy Applied to Soft Matter


We investigated the impact of sample preparation on the glassy dynamics of thin films of poly(4-chlorostyrene), a polymer whose molecular mobility is particularly sensitive to changes in the specific volume. Samples were obtained by spincoating, the technique most commonly used to prepare thin organic layers, which consists of pouring dilute polymer solutions onto a plate rotating at a high rate. Our experimental results demonstrate that filtering the solutions before spincoating affects the value of the segmental relaxation time of the as-prepared films. Thin polymer layers obtained via filtered solutions show accelerated segmental dynamics upon confinement at the nanoscale level, once below 100nm, while the samples obtained via unfiltered solutions exhibit bulk-like dynamics down to 15-20nm. We analyzed these results by means of the cooperative free volume rate model, considering a larger free volume content in thin films obtained via filtered solutions. The validity of the model predictions was finally verified by measurements of irreversible adsorption, confirming a larger adsorbed amount, corresponding to a higher specific volume, in the case of samples obtained via unfiltered solutions. Our results prove that filtering is a crucial step in the preparation of thin films, and it could be used to switch on and off nanoconfinement effects.

Graphical abstract


Topical issue: Dielectric Spectroscopy Applied to Soft Matter 


  1. 1.
    S. Napolitano, E. Glynos, N.B. Tito, Rep. Prog. Phys. 80, 036602 (2017)CrossRefADSGoogle Scholar
  2. 2.
    K. Binder, A. Milchev, J. Baschnagel, Annu. Rev. Mater. Sci. 26, 107 (1996)CrossRefADSGoogle Scholar
  3. 3.
    R. Richert, Annu. Rev. Phys. Chem. 62, 65 (2011)CrossRefADSGoogle Scholar
  4. 4.
    M. Tress, E.U. Mapesa, W. Kossack, W.K. Kipnusu, M. Reiche, F. Kremer, Science 341, 1371 (2013)CrossRefADSGoogle Scholar
  5. 5.
    L. Hartmann, W. Gorbatschow, J. Hauwede, F. Kremer, Eur. Phys. J. E 8, 145 (2002)CrossRefGoogle Scholar
  6. 6.
    K. Fukao, T. Terasawa, Y. Oda, K. Nakamura, D. Tahara, Phys. Rev. E 84, 041808 (2011)CrossRefADSGoogle Scholar
  7. 7.
    R.D. Priestley, L.J. Broadbelt, J.M. Torkelson, K. Fukao, Phys. Rev. E 75, 061806 (2007)CrossRefADSGoogle Scholar
  8. 8.
    K. Fukao, Y. Miyamoto, Phys. Rev. E 61, 1743 (2000)CrossRefADSGoogle Scholar
  9. 9.
    S. Madkour, P. Szymoniak, M. Heidari, R. von Klitzing, A. Schonhals, ACS Appl. Mater. Interfaces 9, 7535 (2017)CrossRefGoogle Scholar
  10. 10.
    S. Madkour, P. Szymoniak, J. Radnik, A. Schonhals, ACS Appl. Mater. Interfaces 9, 37289 (2017)CrossRefGoogle Scholar
  11. 11.
    M.D. Ediger, J.A. Forrest, Macromolecules 47, 471 (2014)CrossRefADSGoogle Scholar
  12. 12.
    Y. Chai, T. Salez, J.D. McGraw, M. Benzaquen, K. Dalnoki-Veress, E. Raphael, J.A. Forrest, Science 343, 994 (2014)CrossRefADSGoogle Scholar
  13. 13.
    D. Qi, Z. Fakhraai, J.A. Forrest, Phys. Rev. Lett. 101, 096101 (2008)CrossRefADSGoogle Scholar
  14. 14.
    Z. Fakhraai, J.A. Forrest, Science 319, 600 (2008)CrossRefGoogle Scholar
  15. 15.
    N.B. Tito, S.T. Milner, J.E.G. Lipson, Soft Matter 11, 7792 (2015)CrossRefADSGoogle Scholar
  16. 16.
    E. Glynos, K.J. Johnson, B. Frieberg, A. Chremos, S. Narayanan, G. Sakellariou, P.F. Green, Phys. Rev. Lett. 119, 227801 (2017)CrossRefADSGoogle Scholar
  17. 17.
    A. Panagopoulou, S. Napolitano, Phys. Rev. Lett. 119, 097801 (2017)CrossRefADSGoogle Scholar
  18. 18.
    D.N. Simavilla, W.P. Huang, P. Vandestrick, J.-P. Ryckaert, M. Sferrazza, S. Napolitano, ACS Macro Lett. 8, 975 (2017)CrossRefGoogle Scholar
  19. 19.
    N. Jiang, J. Shang, X. Di, M.K. Endoh, T. Koga, Macromolecules 47, 2882 (2014)Google Scholar
  20. 20.
    N.G. Perez-de-Eulate, M. Sferrazza, D. Cangialosi, S. Napolitano, ACS Macro Lett. 6, 354 (2017)CrossRefGoogle Scholar
  21. 21.
    S. Napolitano, M. Wubbenhorst, Nat. Commun. 2, 260 (2011)CrossRefADSGoogle Scholar
  22. 22.
    M.J. Burroughs, S. Napolitano, D. Cangialosi, R.D. Priestley, Macromolecules 49, 4647 (2016)CrossRefADSGoogle Scholar
  23. 23.
    S. Sun, H. Xu, J. Han, Y. Zhu, B. Zuo, X. Wang, W. Zhanga, Soft Matter 12, 8348 (2016)CrossRefADSGoogle Scholar
  24. 24.
    E. Glynos, B. Frieberg, A. Chremos, G. Sakellariou, D.W. Gidley, P.F. Green, Macromolecules 48, 2305 (2015)CrossRefADSGoogle Scholar
  25. 25.
    R.N. Li, A. Clough, Z. Yang, O.K.C. Tsui, Macromolecules 45, 1085 (2012)CrossRefADSGoogle Scholar
  26. 26.
    O.K.C. Tsui, Y.J. Wang, F.K. Lee, C.H. Lam, Z. Yang, Macromolecules 41, 1465 (2008)CrossRefADSGoogle Scholar
  27. 27.
    D.R. Barbero, U. Steiner, Phys. Rev. Lett. 102, 248303 (2009)CrossRefADSGoogle Scholar
  28. 28.
    D.N. Simavilla, W. Huang, C. Housmans, M. Sferrazza, S. Napolitano, ACS Cent. Sci. 4, 755 (2018)CrossRefGoogle Scholar
  29. 29.
    C. Housmans, M. Sferrazza, S. Napolitano, Macromolecules 47, 3390 (2014)CrossRefADSGoogle Scholar
  30. 30.
    P. Gin, N. Jiang, C. Liang, T. Taniguchi, B. Akgun, S.K. Satija, M.K. Endoh, T. Koga, Phys. Rev. Lett. 109, 265501 (2012)CrossRefADSGoogle Scholar
  31. 31.
    R.P. White, J.E.G. Lipson, Macromolecules 51, 4896 (2018)CrossRefADSGoogle Scholar
  32. 32.
    R.P. White, J.E.G. Lipson, Macromolecules 51, 7924 (2018)CrossRefADSGoogle Scholar
  33. 33.
    R.P. White, J.E.G. Lipson, ACS Macro Lett. 6, 529 (2017)CrossRefGoogle Scholar
  34. 34.
    R.P. White, J.E.G. Lipson, J. Chem. Phys. 147, 184503 (2017)CrossRefADSGoogle Scholar
  35. 35.
    C. Rotella, S. Napolitano, L. De Cremer, G. Koeckelberghs, M. Wubbenhorst, Macromolecules 43, 8686 (2010)CrossRefADSGoogle Scholar
  36. 36.
    S. Havriliak, S. Negami, Polymer 8, 161 (1967)CrossRefGoogle Scholar
  37. 37.
    F. Kremer, A. Schoenhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2003)Google Scholar
  38. 38.
    D. Labahn, R. Mix, A. Schoenhals, Phys. Rev. E 79, 011801 (2009)CrossRefADSGoogle Scholar
  39. 39.
    O. Guiselin, Europhys. Lett. 17, 225 (1991)CrossRefADSGoogle Scholar
  40. 40.
    D.N. Simavilla, A. Panagopoulou, S. Napolitano, Macromol. Chem. Phys. 219, 201700303 (2017)Google Scholar
  41. 41.
    S. Napolitano, V. Lupascu, M. Wubbenhorst, Macromolecules 41, 1061 (2008)CrossRefADSGoogle Scholar
  42. 42.
    A. Debot, R.P. White, J.E.G. Lipson, S. Napolitano, ACS Macro Lett. 8, 41 (2019)CrossRefGoogle Scholar
  43. 43.
    G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965)CrossRefADSGoogle Scholar
  44. 44.
    R.P. White, J.E.G. Lipson, Macromolecules 49, 3987 (2016)CrossRefADSGoogle Scholar
  45. 45.
    A. Cangialosi, A. Alegria, J. Colmenero, Prog. Polym. Sci. 54-55, 128 (2016)CrossRefGoogle Scholar
  46. 46.
    V.M. Boucher, D. Cangialosi, A. Alegria, J. Colmenero, Thermochim. Acta 575, 233 (2014)CrossRefGoogle Scholar
  47. 47.
    D. Cangialosi, J. Phys.: Condens. Matter 26, 153101 (2014)Google Scholar
  48. 48.
    V.M. Boucher, D. Cangialosi, H.J. Yin, A. Schonhals, A. Alegria, J. Colmenero, Soft Matter 8, 5119 (2012)CrossRefADSGoogle Scholar
  49. 49.
    S. Napolitano, A. Pilleri, P. Rolla, M. Wubbenhorst, ACS Nano 4, 841 (2010)CrossRefGoogle Scholar
  50. 50.
    K. Adrjanowicz, K. Kaminski, M. Tarnacka, G. Szklarz, M. Paluch, J. Phys. Chem. Lett. 8, 696 (2017)CrossRefGoogle Scholar
  51. 51.
    K. Adrjanowicz, R. Winkler, A. Dziena, M. Paluch, S. Napolitano, ACS Macro Lett. 8, 304 (2019)CrossRefGoogle Scholar
  52. 52.
    S. Napolitano, S. Capponi, B. Vanroy, Eur. Phys. J. E 36, 61 (2013)CrossRefGoogle Scholar
  53. 53.
    F. Kremer, M. Tress, E.U. Mapesa, J. Non-Cryst. Solids 407, 277 (2015)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Alice Debot
    • 1
  • Pragya Tripathi
    • 1
  • Simone Napolitano
    • 1
    Email author
  1. 1.Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Faculté des SciencesUniversité libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations