Flexoelectric coefficients enhancement via doping carbon nanotubes in nematic liquid crystal host

  • F. Moghadas
  • J. B. PoursamadEmail author
  • M. Sahrai
  • M. Emdadi
Regular Article


Flexoelectric coefficients of carbon nanotube (CNT) doped nematic liquid crystals (NLCs) are studied based on the Helfrich theory. Weak and hard anchoring conditions between the NLC molecules and CNTs are considered. The volume fraction of the CNTs in nematic host is assumed to be low, which makes nanotubes aggregation phenomena negligible. Also, the length of doped CNTs is assumed to be lower than 10μm, so these rigid rods with low concentration cannot possess any flexoelectric polarization by themselves, only their presence modifies the flexoelectric coefficients of the NLC system. The Landau-de Gennes theory is used to calculate the order parameter changes in the medium. Also, the numerical density definition is renewed in the presence of nanotubes. It is shown that in the nematic phase the flexoelectric coefficients increase along with the increase of the coupling strength and temperature. The enhancement in flexoelectric coefficients is more significant in hard anchoring conditions than in the weak anchoring case. The flexoelectric coefficients increase up to 5-fold is calculated near the phase transition temperature, which is in good accordance with the experimental reported data.

Graphical abstract


Soft Matter: Liquid crystals 


  1. 1.
    G.J. Sprokel, The Physics and Chemistry of Liquid Crystal Devices (Springer Science & Business Media, 2013)Google Scholar
  2. 2.
    D.K. Yang, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2014)Google Scholar
  3. 3.
    T. Kato, J. Uchida, T. Ichikawa, T. Sakamoto, Angew. Chem. Int. Ed. 57, 4355 (2018)CrossRefGoogle Scholar
  4. 4.
    Q. Li, Nanoscience with Liquid Crystals (Springer International PU, 2016)Google Scholar
  5. 5.
    R.K. Khan, S. Turlapati, N.V.S. Rao, S. Ghosh, Eur. Phys. J. E 40, 75 (2017)CrossRefGoogle Scholar
  6. 6.
    M. Emdadi, J.B. Poursamad, M. Sahrai, F. Moghaddas, Mol. Phys. 116, 1650 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    P. Van Der Schoot, V. Popa-Nita, S. Kralj, J. Phys. Chem. B 112, 4512 (2008)CrossRefGoogle Scholar
  8. 8.
    V. Popa-Nita, S. Kralj, J. Chem. Phys. 132, 024902 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    V. Popa-Nita, M. Cevko, S. Kralj, Liquid Crystal-Anisotropic Nanoparticles Mixtures, edited by J.M. Marulanda, Electronic Properties of Carbon Nanotubes (InTech Press, 2011) pp. 645--664Google Scholar
  10. 10.
    V. Popa-Nita, J. Chem. Phys. 143, 094901 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    M. Yakemseva, I. Dierking, N. Kapernaum, N. Usoltseva, F. Giesselmann, Eur. Phys. J. E 37, 7 (2014)CrossRefGoogle Scholar
  12. 12.
    K.P. Sigdel, G.S. Iannacchione, Eur. Phys. J. E 34, 34 (2011)CrossRefGoogle Scholar
  13. 13.
    E. Petrescu, C. Cirtoaje, Beilstein J. Nanotechnol. 9, 233 (2018)CrossRefGoogle Scholar
  14. 14.
    W. Lee, C.Y. Wang, Y.C. Shih, Appl. Phys. Lett. 85, 513 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    Y.J. Lim, S.S. Bhattacharyya, W. Tie, H.R. Park, Y.H. Lee, S.H. Lee, Liq. Cryst. 40, 1202 (2013)CrossRefGoogle Scholar
  16. 16.
    R. Basu, G.S. Iannacchione, J. Appl. Phys. 106, 124312 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    O. Köysal, Synth. Met. 160, 1097 (2010)CrossRefGoogle Scholar
  18. 18.
    A.Y.G. Fuh, W. Lee, K.Y.C. Huang, Liq. Cryst. 40, 745 (2013)CrossRefGoogle Scholar
  19. 19.
    Y.T. Lai, J.C. Kuo, Y.J. Yang, Sens. Actuators A: Phys. 215, 83 (2014)CrossRefGoogle Scholar
  20. 20.
    Y.T. Lai, J.C. Kuo, Y.J. Yang, Appl. Phys. Lett. 102, 191912 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    A.G. Petrov, Y.G. Marinov, H.P. Hinov, L. Todorova, M. Dencheva-Zarkova, S. Sridevi, P.M. Rafailov, U. Dettlaff-Weglikowska, Mol. Cryst. Liq. Cryst. 545, 58/1282 (2011)CrossRefGoogle Scholar
  22. 22.
    H.P. Hinov, J.I. Pavlič, Y.G. Marinov, A.G. Petrov, S. Sridevi, P.M. Rafailov, U. Dettlaff-Weglikowska, in Proceedings of 16 ISCMP: Progress in Solid State and Molecular Electronics, Ionics and Photonics, 2010, J. Phys.: Conf. Ser., Vol. 253 (IOP Publishing, 2010)Google Scholar
  23. 23.
    A. Buka, N. Éber (Editors), Flexoelectricity in Liquid Crystals: Theory, Experiments and Applications (Imperial College Press, 2012)Google Scholar
  24. 24.
    R.B. Meyer, Phys. Rev. Lett. 22, 918 (1969)ADSCrossRefGoogle Scholar
  25. 25.
    W. Helfreich, Z. Naturforsch. A 26, 833 (1971)ADSCrossRefGoogle Scholar
  26. 26.
    J. Prost, J.P. Marcerou, J. Phys. (Paris) 38, 315 (1977)CrossRefGoogle Scholar
  27. 27.
    M.A. Osipov, Sov. Phys. JETP 58, 1167 (1983)Google Scholar
  28. 28.
    A. Ferrarini, Phys. Rev. E 64, 021710 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    A.M. Somoza, C. Sagui, C. Roland, Phys. Rev. B 63, 081403 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    S. Iijima, C. Brabec, A. Maiti, J. Bernholc, J. Chem. Phys. 104, 2089 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    A. Rochefort, P. Avouris, F. Lesage, D.R. Salahub, Phys. Rev. B 60, 13824 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    F.C. Frank, Discuss. Faraday Soc. 25, 19 (1958)CrossRefGoogle Scholar
  33. 33.
    S.Y. Jeon, S.H. Shin, S.J. Jeong, S.H. Lee, S.H. Jeong, Y.H. Lee, H.C. Choi, K.J. Kim, Appl. Phys. Lett. 90, 121901 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    S.P. Yadav, S. Singh, Prog. Mater. Sci. 80, 38 (2016)CrossRefGoogle Scholar
  35. 35.
    K. Schiele, S. Trimper, Phys. Status Solidi B 118, 267 (1983)ADSCrossRefGoogle Scholar
  36. 36.
    D.W. Berreman, S. Meiboom, Phys. Rev. A 30, 1955 (1984)ADSCrossRefGoogle Scholar
  37. 37.
    A. Poniewierski, T.J. Sluckin, Mol. Phys. 55, 1113 (1985)ADSCrossRefGoogle Scholar
  38. 38.
    P.G. De Gennes, Mol. Cryst. Liq. Cryst. 12, 193 (1971)CrossRefGoogle Scholar
  39. 39.
    H. Mori, J.E.C. Gartland, J.R. Kelly, P. Boss, Jpn. J. Appl. Phys. 38, 135 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, 1953)Google Scholar
  41. 41.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, 1988)Google Scholar
  42. 42.
    P.G. De Gennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, 1993)Google Scholar
  43. 43.
    H. Yokoyama, H.A. Van Sprang, J. Appl. Phys. 57, 4520 (1985)ADSCrossRefGoogle Scholar
  44. 44.
    H.J. Coles, Mol. Cryst. Liq. Cryst. 49, 67 (1978)CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • F. Moghadas
    • 1
  • J. B. Poursamad
    • 1
    Email author
  • M. Sahrai
    • 2
  • M. Emdadi
    • 1
  1. 1.Department of Optical and Laser EngineeringUniversity of BonabBonabIran
  2. 2.Research Institute for Applied Physics and AstronomyTabriz UniversityTabrizIran

Personalised recommendations