High-pressure effects on the benzene pre-crystallization metastable states

  • Mustapha Azreg-AïnouEmail author
  • Beycan İbrahimoğlu
Regular Article


We report new results on the liquid to solid phase transition of benzene. We determine experimentally and investigate the properties of a number of parameters of the benzene metastable state under different pressures (from 0.1 up to 2200atm). It is shown that the supercooling, pressure drop, incubation period, time of abrupt transition from the metastable state to the crystalline state, and time of isothermal freezing all decrease as the external pressure increases, then they all vanish at 2200atm and 356K which may mark the end-point of metastability. Quadratic interpolation formulas for these parameters are provided. The densities and molar heat capacities of supercooled benzene under different pressures have been calculated too.

Graphical abstract


Flowing Matter: Liquids and Complex Fluids 


  1. 1.
    V.V. Brazhkin, J. Phys.: Condens. Matter 18, 9643 (2006)ADSGoogle Scholar
  2. 2.
    I.L. Knunyants, in Encyclopaedic Dictionary in Chemistry (Ed. M. Acad., Soviet Encyclopedia, 1983) p. 792Google Scholar
  3. 3.
    S. Glasstone, Theoretical Chemistry (Boston College, New York, 1948) p. 632Google Scholar
  4. 4.
    “Benzene”, in Encyclopaedic Dictionary of Brockhaus and Efron (Leipzig and St. Petersburg Publishers, Saint Petersburg, 1890--1907) (in Russian)Google Scholar
  5. 5.
    L. Ciabini, F.A. Gorelli, M. Santoro, R. Bini, V. Schettino, M. Mezouar, Phys. Rev. B 72, 094108 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    P.G. Debenedetti, Metastable Liquids: Concepts and Principles (Priceton University Press, Princeton, NJ, 1996)Google Scholar
  7. 7.
    M. Azreg-Aïnou, A. Hüseynov, B. Ibrahimoglu, J. Chem. Phys. 124, 204505 (2006) 125ADSCrossRefGoogle Scholar
  8. 8.
    P. Papon, J. Leblond, P.H.E. Meijer, The Physics of Phase Transitions: Concepts and Applications, 2nd revised edition (Springer-Verlag Berlin Heidelberg, Germany, 2006)Google Scholar
  9. 9.
    E. Kaldis (Editor), Crystal Growth of Electronic Materials (North-Holland, Amsterdam, 1985)Google Scholar
  10. 10.
    B. İbrahimoglu, Y.M. Naziyev, N.F. Aliyev, Contribution to The Scientific and Technical Congress on Heat Processes, Baku, Azerbaijan, 1992, unpublishedGoogle Scholar
  11. 11.
    V.D. Alexandrov, Kinetics of Nucleation and Mass Crystallization of Supercooled Liquid and Amorphous Media (Donbas, Donetsk, Ukraine, 2011) p. 592 (in Russian)Google Scholar
  12. 12.
    I.K. Kikoin (Editor), Table of Physical Quantities. Reference Book (Atomizdat, Moscow, 1976) p. 1008Google Scholar
  13. 13.
    J. Akella, G.C. Kennedy, J. Chem. Phys. 55, 793 (1971)ADSCrossRefGoogle Scholar
  14. 14.
    W. Kauzmann, Chem. Rev. 43, 219 (1948)CrossRefGoogle Scholar
  15. 15.
    F.H. Stillinger, J. Chem. Phys. 88, 7818 (1988)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Z. Cernošek, J. Holubová, E. Cernošková, J. Optoelectron. Adv. Mater. 7, 2941 (2005)Google Scholar
  17. 17.
    J. Holubová, E. Cernošková, Z. Cernošek, J. Therm. Anal. Calorim. 111, 1633 (2013)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    C.A. Hunter, J.K.M. Sanders, J. Am. Chem. Soc. 112, 5525 (1990)CrossRefGoogle Scholar
  20. 20.
    C.M. Baker, G.H. Grant, J. Chem. Theory Comput. 2, 947 (2006)CrossRefGoogle Scholar
  21. 21.
    X.-D. Wen, R. Hoffmann, N.W. Ashcroft, J. Am. Chem. Soc. 133, 9023 (2011)CrossRefGoogle Scholar
  22. 22.
    S. Azadi, R.E. Cohen, J. Chem. Phys. 145, 064501 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    C. Yokoyama, T. Ebina, S. Takahashi, Fluid Phase Equilib. 84, 207 (1993)CrossRefGoogle Scholar
  24. 24.
    V.M. Samsonov, S.A. Vasilyev, I.V. Talyzin, Yu.A. Ryzhkov, JETP Lett. 103, 94 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    B.I. Farzaliev, A.M. Ragimov, Proceedings of the Azerbaijan National Academy of Sciences, Vol. 12 (ANAS, 1984) (in Russian)Google Scholar
  26. 26.
    B.I. Farzaliev, N.F. Aliev, Proceedings of the Science Conference, Vol. 21 (AzTU, Baku, 1992) (in Russian)Google Scholar
  27. 27.
    T.N. Veziroglu (Editor), Hydrogen Materials Science and Chemistry of Carbon Nanomaterials (Kluwer Academic Publishers, Netherlands, 2004)Google Scholar
  28. 28.
    W.M. Haynes (Editor), CRC Handbook of Chemistry and Physics, 96th edition (CRC Press, Taylor and Francis Group, Boca Raton, FL, 2015)Google Scholar
  29. 29.
    V.P. Skripov, M.Z. Faizullin, Crystal-Liquid-Gas Phase Transitions and Thermodynamic Similarity (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006)Google Scholar
  30. 30.
    Ph. Pruzan, D.H. Liebenberg, R.L. Mills, J. Phys. Chem. Solids 47, 949 (1986)ADSCrossRefGoogle Scholar
  31. 31.
    P. Figuiere, A.H. Fuchs, M. Ghelfenstein, H. Szwarc, J. Phys. Chem. Solids 39, 19 (1978)ADSCrossRefGoogle Scholar
  32. 32.
    H. Yurtseven, T. Ünsal, Tsinghua Sci. Technol. 12, 624 (2007)CrossRefGoogle Scholar
  33. 33.
    P.W. Bridgman, J. Chem. Phys. 9, 794 (1941)ADSCrossRefGoogle Scholar
  34. 34.
    J. Akella, G.C. Kennedy, J. Chem. Phys. 55, 793 (1971)ADSCrossRefGoogle Scholar
  35. 35.
    F. Cansell, D. Fabre, J.P. Petitet, J. Chem. Phys. 99, 7300 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    M.M. Thiery, J.M. Leger, J. Chem. Phys. 88, 4255 (1988)ADSCrossRefGoogle Scholar
  37. 37.
    L. Ciabini, M. Santoro, F.A. Gorelli, R. Bini, V. Schettino, S. Raugei, Nat. Mater. 6, 39 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    W. Ostwald, Z. Phys. Chem. 22, 286 (1897)Google Scholar
  39. 39.
    S.Z.D. Cheng, Phase Transitions in Polymers - The Role of Metastable States (Elsevier Science B.V., 2008)Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Başkent UniversityEngineering FacultyAnkaraTurkey
  2. 2.Anatolian Plasma Technology Energy CenterGazi University Gölbaşi CampusAnkaraTurkey

Personalised recommendations