Advertisement

Isochronal superpositioning in the equilibrium regime of superpressed propylene carbonate to ∼ 1.8 GPa: A study by diffusivity measurement of the fluorescent probe Coumarin 1

  • Marco BonettiEmail author
  • Alizée Dubois
Regular Article
  • 15 Downloads

Abstract.

We address the problem of glass-forming of liquids by superpressing. We study the pressure-induced dynamic change of the fragile van der Waals liquid propylene carbonate towards the glassy state in the equilibrium regime by measuring the diffusivity of the fluorescent probe Coumarin 1 embedded in the host liquid. The probe diffusivity is measured by the fluorescence recovery after photobleaching (FRAP) technique across a bleached volume generated by the near-field diffracted pattern of a laser beam. The recovered fluorescence intensity fits to a stretched exponential with the diffusive time \(\tau\) and the stretched exponent \(\beta\) as free parameters. In the pressure range [0.3-1.0]GPa the diffusivity decouples from the Stokes-Einstein relation. The decoupling correlates well to a decrease of \(\beta\). The variation of \(\beta\) is non-monotonous with \( \tau\) showing a minimum at \(\tau\sim 10^{3}\) s. We evidence an isochronal superpositioning over about 3 decades of \( \tau\) between ∼ 10 s and \( \sim 3\times 10^{3}\) s and a density scaling in the whole investigated pressure range. The pressure at which \( \beta\) is minimum coincides to the dynamical crossover pressure measured by other authors. This crossover pressure is compatible with the critical point of MCT theory. As our studied pressure range encompasses the critical pressure, the non-monotonous variation of \( \beta\) opens new insight in the approach to the critical point.

Graphical abstract

Keywords

Flowing Matter: Liquids and Complex Fluids 

References

  1. 1.
    C.M. Roland, S. Hensel-Bielowka, M. Paluch, R. Casalini, Rep. Prog. Phys. 68, 1405 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    M. Paluch, K. Grzybowska, A. Grzybowski, J. Phys.: Condens. Matter 19, 205117 (2007)ADSGoogle Scholar
  3. 3.
    K. Kaminski, S. Pawlus, K. Adrjanowicz, Z. Wojnarowska, P. Wlodarczyk, M. Paluch, J. Phys.: Condens. Matter 24, 065105 (2012)ADSGoogle Scholar
  4. 4.
    L. Hong, P.D. Gujrati, V.N. Novikov, A.P. Sokolov, J. Chem. Phys. 131, 194511 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    L. Hong, V.N. Novikov, A.P. Sokolov, Phys. Rev. E 83, 061508 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    A. Tölle, Rep. Prog. Phys. 64, 1473 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    K.L. Ngai, R. Casalini, S. Capaccioli, M. Paluch, C.M. Roland, J. Phys. Chem. B 109, 17356 (2005)CrossRefGoogle Scholar
  8. 8.
    R. Casalini, D. Fragiadakis, C.M. Roland, J. Chem. Phys. 142, 064504 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    H.W. Hansen, B. Frick, S. Capaccioli, A. Sanz, K. Niss, J. Chem. Phys. 149, 214503 (2018)CrossRefGoogle Scholar
  10. 10.
    M. Bonetti, J. Phys. Chem. B 120, 4319 (2016)CrossRefGoogle Scholar
  11. 11.
    I. Chang, H. Sillescu, J. Phys. Chem. B 101, 8794 (1997)CrossRefGoogle Scholar
  12. 12.
    F.R. Blackburn, C.-Y. Wang, M.D. Ediger, J. Phys. Chem. 100, 18249 (1996)CrossRefGoogle Scholar
  13. 13.
    D. Axelrod, D.E. Koppel, J. Schlessinger, E. Elson, W.W. Webb, Biophys. J. 16, 1055 (1976)ADSCrossRefGoogle Scholar
  14. 14.
    J.C.G. Blonk, A. Don, H. Van Aalst, J.J. Birmingham, J. Microsc. 169, 363 (1993)CrossRefGoogle Scholar
  15. 15.
    K. Braeckmans, K. Remaut, R.E. Vandenbroucke, B. Lucas, S.C. De Smedt, J. Demeester, Biophys. J. 92, 2172 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    M.T. Cicerone, M.D. Ediger, J. Chem. Phys. 104, 7210 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    F. Bardak, J.R. Rajian, P. Son, E.L. Quitevis, J. Non-Cryst. Solids 407, 324 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    R. Casalini, S. Bair, J. Chem. Phys. 128, 084511 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    A. Reiser, G. Kasper, Europhys. Lett. 76, 1137 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    G.J. Piermarini, S. Block, J.D. Barnett, J. Appl. Phys. 44, 5377 (1973)ADSCrossRefGoogle Scholar
  21. 21.
    S. Pawlus, R. Casalini, C.M. Roland, M. Paluch, S.J. Rzoska, J. Ziolo, Phys. Rev. E 70, 061501 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    M.V. Kondrin, E.L. Gromnitskaya, A.A. Pronin, A.G. Lyapin, V.V. Brazhkin, A.A. Volkov, J. Chem. Phys. 137, 084502 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    I.V. Danilov, E.L. Gromnitskaya, V.V. Brazhkin, J. Phys. Chem. B 120, 7593 (2016)CrossRefGoogle Scholar
  24. 24.
    A. Reiser, G. Kasper, S. Hunklinger, Phys. Rev. B 72, 094204 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    B.D. Wagner, Molecules 14, 210 (2009)CrossRefGoogle Scholar
  26. 26.
    T. Gustavsson, L. Cassara, S. Marguet, G. Gurzadyan, P. van der Meulen, S. Pommeret, J.-C. Mialocq, Photochem. Photobiol. Sci. 2, 329 (2003)CrossRefGoogle Scholar
  27. 27.
    T.K.L. Meyvis, S.C. De Smedt, P. Van Oostveldt, J. Demeester, Pharm. Res. 16, 1153 (1999)CrossRefGoogle Scholar
  28. 28.
    F.J. Torcal-Milla, L.M. Sanchez-Brea, Appl. Opt. 56, 3628 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    X. Luo, M. Hui, S. Wang, Y. Hou, S. Zhou, Q. Zhu, Rev. Sci. Instrum. 89, 033102 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    S. Seiffert, W. Oppermann, J. Microsc. 220, 20 (2005)MathSciNetCrossRefGoogle Scholar
  31. 31.
    P.A. Perry, M.A. Fitzgerald, R.G. Gilbert, Biomacromolecules 7, 521 (2006)CrossRefGoogle Scholar
  32. 32.
    N. Tateiwa, Y. Haga, Rev. Sci. Instrum. 80, 123901 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    S. Klotz, K. Takemura, T. Strässle, T. Hansen, J. Phys.: Condens. Matter 24, 325103 (2012)Google Scholar
  34. 34.
    Y. Yoshimura, H. Abe, Y. Imai, T. Takekiyo, N. Hamaya, J. Phys. Chem. B 117, 3264 (2013)CrossRefGoogle Scholar
  35. 35.
    M.C.C. Ribeiro, A.A.H. Padua, M.F. Costa Gomes, J. Chem. Phys. 140, 244514 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    T.C. Ransom, W.F. Oliver, Phys. Rev. Lett. 119, 025702 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    T.C. Ransom, M. Ahart, R.J. Hemley, C.M. Roland, Macromolecules 50, 8274 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    A. Bondeau, J. Huck, J. Phys. (Paris) 46, 1717 (1985)CrossRefGoogle Scholar
  39. 39.
    K. Schröter, E. Donth, J. Non-Cryst. Solids 307-310, 270 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    M.V. Kondrin, A.A. Pronin, Y.B. Lebed, V.V. Brazhkin, J. Chem. Phys. 139, 084510 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    E. Endress, S. Weigelt, G. Reents, T.M. Bayerl, Eur. Phys. J. E 16, 81 (2005)CrossRefGoogle Scholar
  42. 42.
    F. Mueller, P. Wach, J.G. McNally, Biophysical J. 94, 3323 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    F. Waharte, C.M. Brown, S. Coscoy, E. Coudrier, F. Amblard, Biophysical J. 88, 1467 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    G.P. Johari, E. Whalley, Faraday Symp. Chem. Soc. 6, 23 (1972)CrossRefGoogle Scholar
  45. 45.
    C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin, J. Appl. Phys. 88, 3113 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    L. Comez, D. Fioretto, H. Kriegs, W. Steffen, Phys. Rev. E 66, 032501 (2002)ADSCrossRefGoogle Scholar
  47. 47.
    S.F. Swallen, P.A. Bonvallet, R.J. McMahon, M.D. Ediger, Phys. Rev. Lett. 90, 015901 (2003)ADSCrossRefGoogle Scholar
  48. 48.
    K.R. Harris, J. Chem. Phys. 131, 054503 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    W.M. Du, G. Li, H.Z. Cummins, M. Fuchs, J. Toulouse, L.A. Knauss, Phys. Rev. E 49, 2192 (1994)ADSCrossRefGoogle Scholar
  50. 50.
    L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    M.K. Mapes, S.F. Swallen, M.D. Ediger, J. Phys. Chem. B 110, 507 (2006)CrossRefGoogle Scholar
  52. 52.
    F. Qi, K.U. Schug, S. Dupont, A. Döß, R. Böhmer, H. Sillescu, H. Kolshorn, H. Zimmermann, J. Chem. Phys. 112, 9455 (2000)ADSCrossRefGoogle Scholar
  53. 53.
    C.P. Lindsey, G.D. Patterson, J. Chem. Phys. 73, 3348 (1980)ADSCrossRefGoogle Scholar
  54. 54.
    R. Zorn, J. Chem. Phys. 116, 3204 (2002)ADSCrossRefGoogle Scholar
  55. 55.
    K. Niss, T. Hecksher, J. Chem. Phys. 149, 230901 (2018)ADSCrossRefGoogle Scholar
  56. 56.
    R. Casalini, C.M. Roland, J. Chem. Phys. 148, 134506 (2018)ADSCrossRefGoogle Scholar
  57. 57.
    A. Rivera-Calzada, K. Kaminski, C. Leon, M. Paluch, J. Phys. Chem. B 112, 3110 (2008)CrossRefGoogle Scholar
  58. 58.
    V.N. Novikov, A.P. Sokolov, Phys. Rev. E 67, 031507 (2003)ADSCrossRefGoogle Scholar
  59. 59.
    R. Casalini, M. Paluch, C.M. Roland, J. Chem. Phys. 118, 5701 (2003)ADSCrossRefGoogle Scholar
  60. 60.
    R. Casalini, C.M. Roland, Phys. Rev. Lett. 92, 245702 (2004)ADSCrossRefGoogle Scholar
  61. 61.
    W. Kob, in Experimental and Theoretical Approaches to Supercooled Liquids: Advances and Novel Applications, edited by J. Fourkas, D. Kivelson, U. Mohanty, K. Nelson (ACS Books, Washington, 1997)Google Scholar
  62. 62.
    A. Cavagna, Phys. Rep. 476, 51 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    Z. Chen, C.A. Angell, R. Richert, Eur. Phys. J. E 35, 65 (2012)CrossRefGoogle Scholar
  64. 64.
    F. Mallamace, C. Branca, C. Corsaro, N. Leone, J. Spooren, S.-H. Chen, H.E. Stanley, Proc. Natl. Acad. Sci. U.S.A. 107, 22457 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    F. Mallamace, C. Corsaro, N. Leone, V. Villari, N. Micali, S.-H. Chen, Sci. Rep. 4, 1 (2014)Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Service de Physique de l’Etat Condensé CEA-SPEC, CNRSUniversité Paris-Saclay, CEA SaclayGif sur YvetteFrance
  2. 2.Laboratoire de PhysiqueENS de LyonLyonFrance

Personalised recommendations