Advertisement

Broadband dielectric spectroscopy to validate architectural features in Type-A polymers: Revisiting the poly(glycidyl phenyl ether) case

  • Daniel E. Martínez-TongEmail author
  • Jordan Ochs
  • Fabienne Barroso-Bujans
  • Angel Alegria
Regular Article
Part of the following topical collections:
  1. Dielectric Spectroscopy Applied to Soft Matter

Abstract.

Broadband dielectric spectroscopy (BDS) is a powerful technique that allows studying the molecular dynamics of materials containing polar entities. Among a vast set of different applications, BDS can be used as a complementary tool in polymer synthesis. In this work, we will show how BDS can be used to validate architectural features in Type-A polymers, those having a net dipole moment component along the chain contour. Specifically, we will focus on the evaluation of the dielectric relaxation of poly(glycidyl phenyl ether) (PGPE) samples designed and synthesized with a variety of topologies and regio-orders: linear regio-regular chains synthesized from monofunctional and bifunctional initiators, macrocyclic regio-regular chains, and linear and macrocyclic regio-irregular chains. Our study highlights the impact of using BDS as a complementary characterization technique for providing topological details of polymers, which are otherwise not possible with many traditional techniques (e.g., NMR and mass spectrometry).

Graphical abstract

Keywords

Topical issue: Dielectric Spectroscopy Applied to Soft Matter 

References

  1. 1.
    F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (Springer-Verlag Berlin Heidelberg New York, Germany, 2003)Google Scholar
  2. 2.
    W.H. Stockmayer, Pure Appl. Chem. 15, 539 (1964)CrossRefGoogle Scholar
  3. 3.
    J.C. Randall, in Encyclopedia of Polymer Science and Technology (John Wiley & Sons, 2008)Google Scholar
  4. 4.
    J. Ochs, A. Veloso, D.E. Martínez-Tong, A. Alegria, F. Barroso-Bujans, Macromolecules 51, 2447 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    H. Yoshida, H. Watanabe, K. Adachi, T. Kotaka, Macromolecules 24, 2981 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    J. Ochs, D.E. Martínez-Tong, A. Alegria, F. Barroso-Bujans, Macromolecules 52, 2083 (2019)ADSCrossRefGoogle Scholar
  7. 7.
    T. Gambino, A. Martínez de Ilarduya, A. Alegría, F. Barroso-Bujans, Macromolecules 49, 1060 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, 2003)Google Scholar
  9. 9.
    Prince E. Rouse jr., J. Chem. Phys. 21, 1272 (1953)ADSCrossRefGoogle Scholar
  10. 10.
    C. Riedel, A. Alegría, P. Tordjeman, J. Colmenero, Macromolecules 42, 8492 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    S. Arrese-Igor, A. Alegría, J. Colmenero, Phys. Rev. Lett. 113, 078302 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    M. Gervais, A. Labbe, S. Carlotti, A. Deffieux, Macromolecules 42, 2395 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    B.A. Laurent, S.M. Grayson, J. Am. Chem. Soc. 128, 4238 (2006)CrossRefGoogle Scholar
  14. 14.
    F.M. Haque, A. Alegria, S.M. Grayson, F. Barroso-Bujans, Macromolecules 50, 1870 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    I. Asenjo-Sanz, A. Veloso, J.I. Miranda, J.A. Pomposo, F. Barroso-Bujans, Polym. Chem. 5, 6905 (2014)CrossRefGoogle Scholar
  16. 16.
    H. Vogel, Phys. Z. 22, 645 (1921)Google Scholar
  17. 17.
    G.S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925)CrossRefGoogle Scholar
  18. 18.
    G. Tammann, W. Hesse, Z. Anorg. Allg. Chem. 156, 245 (1926)CrossRefGoogle Scholar
  19. 19.
    J.D. Ferry, Viscoelastic Properties of Polymers, 3rd edition (John Wiley & Sons, New York, 1980)Google Scholar
  20. 20.
    N.G. McCrum, B.E. Read, G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Dover Publications, 1991)Google Scholar
  21. 21.
    H. Watanabe, O. Urakawa, T. Kotaka, Macromolecules 26, 5073 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    J.A. Pomposo, I. Perez-Baena, L. Buruaga, A. Alegría, A.J. Moreno, J. Colmenero, Macromolecules 44, 8644 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    J. van Turnhout, M. Wübbenhorst, Novocontrol Dielectrics Newsletter, No. 14, November 2000Google Scholar
  24. 24.
    A.-L. Brocas, A. Deffieux, N. Le Malicot, S. Carlotti, Polym. Chem. 3, 1189 (2012)CrossRefGoogle Scholar
  25. 25.
    M. Gervais, A.-L. Brocas, G. Cendejas, A. Deffieux, S. Carlotti, Macromolecules 43, 1778 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    E.A. Di Marzio, C.M. Guttman, Macromolecules 20, 1403 (1987)ADSCrossRefGoogle Scholar
  27. 27.
    A.J.M. Yang, E.A. Di Marzio, Macromolecules 24, 6012 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    K. Ueberreiter, G. Kanig, J. Colloid Sci. 7, 569 (1952)CrossRefGoogle Scholar
  29. 29.
    K.U. Kirst, F. Kremer, T. Pakula, J. Hollingshurst, Colloid Polym. Sci. 272, 1420 (1994)CrossRefGoogle Scholar
  30. 30.
    L. Zhang, R. Elupula, S.M. Grayson, J.M. Torkelson, Macromolecules 50, 1147 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    A. Pipertzis, M.D. Hossain, M.J. Monteiro, G. Floudas, Macromolecules 51, 1488 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    L. Gao, J. Oh, Y. Tu, T. Chang, C.Y. Li, Polymer 170, 198 (2019)CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Daniel E. Martínez-Tong
    • 1
    • 2
    • 3
    Email author
  • Jordan Ochs
    • 1
    • 2
  • Fabienne Barroso-Bujans
    • 1
    • 2
    • 3
    • 4
  • Angel Alegria
    • 1
    • 3
  1. 1.Materials Physics Center, CSIC-UPV/EHUSan SebastianSpain
  2. 2.Donostia International Physics Center (DIPC)San SebastianSpain
  3. 3.Departamento de Física de MaterialesUniversity of the Basque Country (UPV/EHU)San SebastianSpain
  4. 4.IKERBASQUE - Basque Foundation for ScienceBilbaoSpain

Personalised recommendations